--- license: apache-2.0 language: - en pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo base_model: SicariusSicariiStuff/Phi-3.5-mini-instruct_Uncensored --- # Triangle104/Phi-3.5-mini-instruct_Uncensored-Q5_K_S-GGUF This model was converted to GGUF format from [`SicariusSicariiStuff/Phi-3.5-mini-instruct_Uncensored`](https://huggingface.co/SicariusSicariiStuff/Phi-3.5-mini-instruct_Uncensored) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/SicariusSicariiStuff/Phi-3.5-mini-instruct_Uncensored) for more details on the model. --- Model details: - This is the basic model, no additional data was used except my uncensoring protocol. Model Details Censorship level: Low - Medium 6.4 / 10 (10 completely uncensored) UGI score: UGI Score Phi-3.5-mini-instruct_Uncensored is available at the following quantizations: Original: FP16 GGUF: Static Quants | iMatrix_GGUF-bartowski | iMatrix_GGUF-mradermacher EXL2: 3.0 bpw | 4.0 bpw | 5.0 bpw | 6.0 bpw | 7.0 bpw | 8.0 bpw Specialized: FP8 Mobile (ARM): Q4_0_X_X Support GPUs too expensive My Ko-fi page ALL donations will go for research resources and compute, every bit is appreciated 🙏🏻 Other stuff Blog and updates Some updates, some rambles, sort of a mix between a diary and a blog. LLAMA-3_8B_Unaligned The grand project that started it all. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Phi-3.5-mini-instruct_Uncensored-Q5_K_S-GGUF --hf-file phi-3.5-mini-instruct_uncensored-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Phi-3.5-mini-instruct_Uncensored-Q5_K_S-GGUF --hf-file phi-3.5-mini-instruct_uncensored-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Phi-3.5-mini-instruct_Uncensored-Q5_K_S-GGUF --hf-file phi-3.5-mini-instruct_uncensored-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Phi-3.5-mini-instruct_Uncensored-Q5_K_S-GGUF --hf-file phi-3.5-mini-instruct_uncensored-q5_k_s.gguf -c 2048 ```