Triangle104 commited on
Commit
1be38a9
·
verified ·
1 Parent(s): 5105bce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md CHANGED
@@ -25,6 +25,60 @@ tags:
25
  This model was converted to GGUF format from [`prithivMLmods/QwQ-LCoT-7B-Instruct`](https://huggingface.co/prithivMLmods/QwQ-LCoT-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
26
  Refer to the [original model card](https://huggingface.co/prithivMLmods/QwQ-LCoT-7B-Instruct) for more details on the model.
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ## Use with llama.cpp
29
  Install llama.cpp through brew (works on Mac and Linux)
30
 
 
25
  This model was converted to GGUF format from [`prithivMLmods/QwQ-LCoT-7B-Instruct`](https://huggingface.co/prithivMLmods/QwQ-LCoT-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
26
  Refer to the [original model card](https://huggingface.co/prithivMLmods/QwQ-LCoT-7B-Instruct) for more details on the model.
27
 
28
+ ---
29
+ Model details:
30
+ -
31
+ The QwQ-LCoT-7B-Instruct is a fine-tuned language model designed for advanced reasoning and instruction-following tasks. It leverages the Qwen2.5-7B base model and has been fine-tuned on the amphora/QwQ-LongCoT-130K dataset, focusing on chain-of-thought (CoT) reasoning.
32
+
33
+ Key Features:
34
+
35
+ Model Size:
36
+
37
+ 7.62B parameters (FP16 precision).
38
+
39
+ Model Sharding:
40
+
41
+ The model weights are split into 4 shards (safetensors) for efficient storage and download:
42
+ model-00001-of-00004.safetensors (4.88 GB)
43
+ model-00002-of-00004.safetensors (4.93 GB)
44
+ model-00003-of-00004.safetensors (4.33 GB)
45
+ model-00004-of-00004.safetensors (1.09 GB)
46
+
47
+ Tokenizer:
48
+
49
+ Byte-pair encoding (BPE) based.
50
+ Files included:
51
+ vocab.json (2.78 MB)
52
+ merges.txt (1.82 MB)
53
+ tokenizer.json (11.4 MB)
54
+
55
+ Special tokens mapped in special_tokens_map.json (e.g., <pad>, <eos>).
56
+
57
+ Configuration Files:
58
+
59
+ config.json: Defines model architecture and hyperparameters.
60
+ generation_config.json: Settings for inference and text generation tasks.
61
+
62
+ Training Dataset:
63
+
64
+ Dataset Name: amphora/QwQ-LongCoT-130K
65
+ Size: 133k examples.
66
+ Focus: Chain-of-Thought reasoning for complex tasks.
67
+
68
+ Use Cases:
69
+
70
+ Instruction Following:
71
+ Handle user instructions effectively, even for multi-step tasks.
72
+
73
+ Reasoning Tasks:
74
+
75
+ Perform logical reasoning and generate detailed step-by-step solutions.
76
+
77
+ Text Generation:
78
+
79
+ Generate coherent, context-aware responses.
80
+
81
+ ---
82
  ## Use with llama.cpp
83
  Install llama.cpp through brew (works on Mac and Linux)
84