File size: 8,284 Bytes
1e5b8ed ee8c61f 1e5b8ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
license: apache-2.0
language:
- en
base_model: prithivMLmods/QwQ-LCoT2-7B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- LCoT
- Qwen
- v2
- llama-cpp
- gguf-my-repo
datasets:
- PowerInfer/QWQ-LONGCOT-500K
- AI-MO/NuminaMath-CoT
- prithivMLmods/Math-Solve
- amphora/QwQ-LongCoT-130K
- prithivMLmods/Deepthink-Reasoning
model-index:
- name: QwQ-LCoT2-7B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 55.76
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 34.37
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 22.21
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.38
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.75
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.13
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
name: Open LLM Leaderboard
---
# Triangle104/QwQ-LCoT2-7B-Instruct-Q5_K_S-GGUF
This model was converted to GGUF format from [`prithivMLmods/QwQ-LCoT2-7B-Instruct`](https://huggingface.co/prithivMLmods/QwQ-LCoT2-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/QwQ-LCoT2-7B-Instruct) for more details on the model.
---
Model details:
-
The QwQ-LCoT2-7B-Instruct is a fine-tuned language model
designed for advanced reasoning and instruction-following tasks. It
leverages the Qwen2.5-7B base model and has been fine-tuned on the chain
of thought reasoning datasets, focusing on chain-of-thought (CoT)
reasoning for problems. This model is optimized for tasks requiring
logical reasoning, detailed explanations, and multi-step
problem-solving, making it ideal for applications such as
instruction-following, text generation, and complex reasoning tasks.
Quickstart with Transformers
Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/QwQ-LCoT2-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r in strawberry."
messages = [
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Intended Use
The QwQ-LCoT2-7B-Instruct model is designed for advanced reasoning
and instruction-following tasks, with specific applications including:
Instruction Following: Providing detailed and step-by-step guidance for a wide range of user queries.
Logical Reasoning: Solving problems requiring multi-step thought processes, such as math problems or complex logic-based scenarios.
Text Generation: Crafting coherent, contextually relevant, and well-structured text in response to prompts.
Problem-Solving: Analyzing and addressing tasks
that require chain-of-thought (CoT) reasoning, making it ideal for
education, tutoring, and technical support.
Knowledge Enhancement: Leveraging reasoning datasets to offer deeper insights and explanations for a wide variety of topics.
Limitations
Data Bias: As the model is fine-tuned on specific datasets, its outputs may reflect inherent biases from the training data.
Context Limitation: Performance may degrade for
tasks requiring knowledge or reasoning that significantly exceeds the
model's pretraining or fine-tuning context.
Complexity Ceiling: While optimized for multi-step
reasoning, exceedingly complex or abstract problems may result in
incomplete or incorrect outputs.
Dependency on Prompt Quality: The quality and specificity of the user prompt heavily influence the model's responses.
Non-Factual Outputs: Despite being fine-tuned for
reasoning, the model can still generate hallucinated or factually
inaccurate content, particularly for niche or unverified topics.
Computational Requirements: Running the model
effectively requires significant computational resources, particularly
when generating long sequences or handling high-concurrency workloads.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/QwQ-LCoT2-7B-Instruct-Q5_K_S-GGUF --hf-file qwq-lcot2-7b-instruct-q5_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/QwQ-LCoT2-7B-Instruct-Q5_K_S-GGUF --hf-file qwq-lcot2-7b-instruct-q5_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/QwQ-LCoT2-7B-Instruct-Q5_K_S-GGUF --hf-file qwq-lcot2-7b-instruct-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/QwQ-LCoT2-7B-Instruct-Q5_K_S-GGUF --hf-file qwq-lcot2-7b-instruct-q5_k_s.gguf -c 2048
```
|