Triangle104 commited on
Commit
ef22016
·
verified ·
1 Parent(s): 022f3bf

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +0 -80
README.md CHANGED
@@ -18,86 +18,6 @@ tags:
18
  This model was converted to GGUF format from [`huihui-ai/Qwen2.5-1.5B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2.5-1.5B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
  Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-1.5B-Instruct-abliterated) for more details on the model.
20
 
21
- ---
22
- Model details:
23
- -
24
- This is an uncensored version of Qwen2.5-1.5B-Instruct created with abliteration (see this article to know more about it).
25
-
26
- Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models.
27
- Usage
28
-
29
- You can use this model in your applications by loading it with Hugging Face's transformers library:
30
-
31
- from transformers import AutoModelForCausalLM, AutoTokenizer
32
-
33
- # Load the model and tokenizer
34
- model_name = "huihui-ai/Qwen2.5-1.5B-Instruct-abliterated"
35
- model = AutoModelForCausalLM.from_pretrained(
36
- model_name,
37
- torch_dtype="auto",
38
- device_map="auto"
39
- )
40
- tokenizer = AutoTokenizer.from_pretrained(model_name)
41
-
42
- # Initialize conversation context
43
- initial_messages = [
44
- {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
45
- ]
46
- messages = initial_messages.copy() # Copy the initial conversation context
47
-
48
- # Enter conversation loop
49
- while True:
50
- # Get user input
51
- user_input = input("User: ").strip() # Strip leading and trailing spaces
52
-
53
- # If the user types '/exit', end the conversation
54
- if user_input.lower() == "/exit":
55
- print("Exiting chat.")
56
- break
57
-
58
- # If the user types '/clean', reset the conversation context
59
- if user_input.lower() == "/clean":
60
- messages = initial_messages.copy() # Reset conversation context
61
- print("Chat history cleared. Starting a new conversation.")
62
- continue
63
-
64
- # If input is empty, prompt the user and continue
65
- if not user_input:
66
- print("Input cannot be empty. Please enter something.")
67
- continue
68
-
69
- # Add user input to the conversation
70
- messages.append({"role": "user", "content": user_input})
71
-
72
- # Build the chat template
73
- text = tokenizer.apply_chat_template(
74
- messages,
75
- tokenize=False,
76
- add_generation_prompt=True
77
- )
78
-
79
- # Tokenize input and prepare it for the model
80
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
81
-
82
- # Generate a response from the model
83
- generated_ids = model.generate(
84
- **model_inputs,
85
- max_new_tokens=8192
86
- )
87
-
88
- # Extract model output, removing special tokens
89
- generated_ids = [
90
- output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
91
- ]
92
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
93
-
94
- # Add the model's response to the conversation
95
- messages.append({"role": "assistant", "content": response})
96
-
97
- # Print the model's response
98
- print(f"Qwen: {response}")
99
-
100
- ---
101
  ## Use with llama.cpp
102
  Install llama.cpp through brew (works on Mac and Linux)
103
 
 
18
  This model was converted to GGUF format from [`huihui-ai/Qwen2.5-1.5B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2.5-1.5B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
  Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-1.5B-Instruct-abliterated) for more details on the model.
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ## Use with llama.cpp
22
  Install llama.cpp through brew (works on Mac and Linux)
23