|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2/blob/main/LICENSE |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
base_model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 |
|
tags: |
|
- chat |
|
- abliterated |
|
- uncensored |
|
- llama-cpp |
|
- gguf-my-repo |
|
--- |
|
|
|
# Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF |
|
This model was converted to GGUF format from [`huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2`](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) for more details on the model. |
|
|
|
--- |
|
Model details: |
|
- |
|
This is an uncensored version of Qwen2.5-14B-Instruct created with abliteration (see this article to know more about it). |
|
|
|
Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models. |
|
|
|
Important Note This version is an improvement over the previous one Qwen2.5-14B-Instruct-abliterated. |
|
Usage |
|
|
|
You can use this model in your applications by loading it with Hugging Face's transformers library: |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load the model and tokenizer |
|
model_name = "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# Initialize conversation context |
|
initial_messages = [ |
|
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."} |
|
] |
|
messages = initial_messages.copy() # Copy the initial conversation context |
|
|
|
# Enter conversation loop |
|
while True: |
|
# Get user input |
|
user_input = input("User: ").strip() # Strip leading and trailing spaces |
|
|
|
# If the user types '/exit', end the conversation |
|
if user_input.lower() == "/exit": |
|
print("Exiting chat.") |
|
break |
|
|
|
# If the user types '/clean', reset the conversation context |
|
if user_input.lower() == "/clean": |
|
messages = initial_messages.copy() # Reset conversation context |
|
print("Chat history cleared. Starting a new conversation.") |
|
continue |
|
|
|
# If input is empty, prompt the user and continue |
|
if not user_input: |
|
print("Input cannot be empty. Please enter something.") |
|
continue |
|
|
|
# Add user input to the conversation |
|
messages.append({"role": "user", "content": user_input}) |
|
|
|
# Build the chat template |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
# Tokenize input and prepare it for the model |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
# Generate a response from the model |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=8192 |
|
) |
|
|
|
# Extract model output, removing special tokens |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
# Add the model's response to the conversation |
|
messages.append({"role": "assistant", "content": response}) |
|
|
|
# Print the model's response |
|
print(f"Qwen: {response}") |
|
|
|
--- |
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q6_k.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q6_k.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q6_k.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q6_K-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q6_k.gguf -c 2048 |
|
``` |
|
|