Triangle104 commited on
Commit
5d21ebe
1 Parent(s): 2f67385

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +0 -82
README.md CHANGED
@@ -18,88 +18,6 @@ tags:
18
  This model was converted to GGUF format from [`huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2`](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
  Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) for more details on the model.
20
 
21
- ---
22
- Model details:
23
- -
24
- This is an uncensored version of Qwen2.5-14B-Instruct created with abliteration (see this article to know more about it).
25
-
26
- Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models.
27
-
28
- Important Note This version is an improvement over the previous one Qwen2.5-14B-Instruct-abliterated.
29
- Usage
30
-
31
- You can use this model in your applications by loading it with Hugging Face's transformers library:
32
-
33
- from transformers import AutoModelForCausalLM, AutoTokenizer
34
-
35
- # Load the model and tokenizer
36
- model_name = "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2"
37
- model = AutoModelForCausalLM.from_pretrained(
38
- model_name,
39
- torch_dtype="auto",
40
- device_map="auto"
41
- )
42
- tokenizer = AutoTokenizer.from_pretrained(model_name)
43
-
44
- # Initialize conversation context
45
- initial_messages = [
46
- {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
47
- ]
48
- messages = initial_messages.copy() # Copy the initial conversation context
49
-
50
- # Enter conversation loop
51
- while True:
52
- # Get user input
53
- user_input = input("User: ").strip() # Strip leading and trailing spaces
54
-
55
- # If the user types '/exit', end the conversation
56
- if user_input.lower() == "/exit":
57
- print("Exiting chat.")
58
- break
59
-
60
- # If the user types '/clean', reset the conversation context
61
- if user_input.lower() == "/clean":
62
- messages = initial_messages.copy() # Reset conversation context
63
- print("Chat history cleared. Starting a new conversation.")
64
- continue
65
-
66
- # If input is empty, prompt the user and continue
67
- if not user_input:
68
- print("Input cannot be empty. Please enter something.")
69
- continue
70
-
71
- # Add user input to the conversation
72
- messages.append({"role": "user", "content": user_input})
73
-
74
- # Build the chat template
75
- text = tokenizer.apply_chat_template(
76
- messages,
77
- tokenize=False,
78
- add_generation_prompt=True
79
- )
80
-
81
- # Tokenize input and prepare it for the model
82
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
83
-
84
- # Generate a response from the model
85
- generated_ids = model.generate(
86
- **model_inputs,
87
- max_new_tokens=8192
88
- )
89
-
90
- # Extract model output, removing special tokens
91
- generated_ids = [
92
- output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
93
- ]
94
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
95
-
96
- # Add the model's response to the conversation
97
- messages.append({"role": "assistant", "content": response})
98
-
99
- # Print the model's response
100
- print(f"Qwen: {response}")
101
-
102
- ---
103
  ## Use with llama.cpp
104
  Install llama.cpp through brew (works on Mac and Linux)
105
 
 
18
  This model was converted to GGUF format from [`huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2`](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
  Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) for more details on the model.
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ## Use with llama.cpp
22
  Install llama.cpp through brew (works on Mac and Linux)
23