File size: 10,566 Bytes
71c7e1a
 
 
 
 
 
 
 
 
 
 
 
 
85322a0
 
 
 
 
71c7e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85322a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-7B-Instruct-1M
tags:
- chat
- llama-cpp
- gguf-my-repo
library_name: transformers
---

# Triangle104/Qwen2.5-7B-Instruct-1M-Q4_K_M-GGUF
This model was converted to GGUF format from [`Qwen/Qwen2.5-7B-Instruct-1M`](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M) for more details on the model.

---
Model details:
-
Qwen2.5-1M is the long-context version of the Qwen2.5 series models, 
supporting a context length of up to 1M tokens. Compared to the Qwen2.5 
128K version, Qwen2.5-1M demonstrates significantly improved performance
 in handling long-context tasks while maintaining its capability in 
short tasks.


The model has the following features:


Type: Causal Language Models
Training Stage: Pretraining & Post-training
Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
Number of Parameters: 7.61B
Number of Paramaters (Non-Embedding): 6.53B
Number of Layers: 28
Number of Attention Heads (GQA): 28 for Q and 4 for KV
Context Length: Full 1,010,000 tokens and generation 8192 tokens
We recommend deploying with our custom vLLM, which introduces sparse
 attention and length extrapolation methods to ensure efficiency and 
accuracy for long-context tasks. For specific guidance, refer to this section.
You can also use the previous framework that supports Qwen2.5 for 
inference, but accuracy degradation may occur for sequences exceeding 
262,144 tokens.




For more details, please refer to our blog, GitHub, and Documentation.



	
		
	

		Requirements
	



The code of Qwen2.5 has been in the latest Hugging face transformers and we advise you to use the latest version of transformers.


With transformers<4.37.0, you will encounter the following error:


KeyError: 'qwen2'




	
		
	

		Quickstart
	



Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.


from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen2.5-7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]




	
		
	

		Processing Ultra Long Texts
	



To enhance processing accuracy and efficiency for long sequences, we 
have developed an advanced inference framework based on vLLM, 
incorporating sparse attention and length extrapolation. This approach 
significantly improves model generation performance for sequences 
exceeding 256K tokens and achieves a 3 to 7 times speedup for sequences 
up to 1M tokens.


Here we provide step-by-step instructions for deploying the Qwen2.5-1M models with our framework.



	
		
	

		1. System Preparation
	



To achieve the best performance, we recommend using GPUs with Ampere or Hopper architecture, which support optimized kernels.


Ensure your system meets the following requirements:


CUDA Version: 12.1 or 12.3
Python Version: >=3.9 and <=3.12


VRAM Requirements:


For processing 1 million-token sequences:
Qwen2.5-7B-Instruct-1M: At least 120GB VRAM (total across GPUs).
Qwen2.5-14B-Instruct-1M: At least 320GB VRAM (total across GPUs).




If your GPUs do not have sufficient VRAM, you can still use Qwen2.5-1M for shorter tasks.



	
		
	

		2. Install Dependencies
	



For now, you need to clone the vLLM repository from our custom branch
 and install it manually. We are working on getting our branch merged 
into the main vLLM project.


git clone -b dev/dual-chunk-attn [email protected]:QwenLM/vllm.git
cd vllm
pip install -e . -v




	
		
	

		3. Launch vLLM
	



vLLM supports offline inference or launch an openai-like server.


Example of Offline Inference


from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct-1M")

# Pass the default decoding hyperparameters of Qwen2.5-7B-Instruct
# max_tokens is for the maximum length for generation.
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=512)

# Input the model name or path. See below for parameter explanation (after the example of openai-like server).
llm = LLM(model="Qwen/Qwen2.5-7B-Instruct-1M",
    tensor_parallel_size=4,
    max_model_len=1010000,
    enable_chunked_prefill=True,
    max_num_batched_tokens=131072,
    enforce_eager=True,
    # quantization="fp8", # Enabling FP8 quantization for model weights can reduce memory usage.
)

# Prepare your prompts
prompt = "Tell me something about large language models."
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

# generate outputs
outputs = llm.generate([text], sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")



Example of Openai-like Server


vllm serve Qwen/Qwen2.5-7B-Instruct-1M \
  --tensor-parallel-size 4 \
  --max-model-len 1010000 \
  --enable-chunked-prefill --max-num-batched-tokens 131072 \
  --enforce-eager \
  --max-num-seqs 1

# --quantization fp8  # Enabling FP8 quantization for model weights can reduce memory usage.



Then you can use curl or python to interact with the deployed model.


Parameter Explanations:


--tensor-parallel-size


Set to the number of GPUs you are using. Max 4 GPUs for the 7B model, and 8 GPUs for the 14B model.


--max-model-len


Defines the maximum input sequence length. Reduce this value if you encounter Out of Memory issues.


--max-num-batched-tokens


Sets the chunk size in Chunked Prefill. A smaller value reduces activation memory usage but may slow down inference. 
Recommend 131072 for optimal performance.


--max-num-seqs


Limits concurrent sequences processed.




You can also refer to our Documentation for usage of vLLM.



	
		
	

		Troubleshooting:
	



Encountering the error: "The model's max sequence length (xxxxx) 
is larger than the maximum number of tokens that can be stored in the KV
 cache."


 The VRAM reserved for the KV cache is insufficient. Consider reducing the max_model_len or increasing the tensor_parallel_size. Alternatively, you can reduce max_num_batched_tokens, although this may significantly slow down inference.


Encountering the error: "torch.OutOfMemoryError: CUDA out of memory."


 The VRAM reserved for activation weights is insufficient. You can try setting gpu_memory_utilization to 0.85 or lower, but be aware that this might reduce the VRAM available for the KV cache.


Encountering the error: "Input prompt (xxxxx tokens) + lookahead 
slots (0) is too long and exceeds the capacity of the block manager."


 The input is too lengthy. Consider using a shorter sequence or increasing the max_model_len.





	
		
	

		Evaluation & Performance
	



Detailed evaluation results are reported in this 📑 blog and our technical report.



	
		
	

		Citation
	



If you find our work helpful, feel free to give us a cite.


@misc{qwen2.5-1m,
    title = {Qwen2.5-1M: Deploy Your Own Qwen with Context Length up to 1M Tokens},
    url = {https://qwenlm.github.io/blog/qwen2.5-1m/},
    author = {Qwen Team},
    month = {January},
    year = {2025}
}

@article{qwen2.5,
      title={Qwen2.5 Technical Report}, 
      author={An Yang and Baosong Yang and Beichen Zhang and Binyuan Hui and Bo Zheng and Bowen Yu and Chengyuan Li and Dayiheng Liu and Fei Huang and Haoran Wei and Huan Lin and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Yang and Jiaxi Yang and Jingren Zhou and Junyang Lin and Kai Dang and Keming Lu and Keqin Bao and Kexin Yang and Le Yu and Mei Li and Mingfeng Xue and Pei Zhang and Qin Zhu and Rui Men and Runji Lin and Tianhao Li and Tianyi Tang and Tingyu Xia and Xingzhang Ren and Xuancheng Ren and Yang Fan and Yang Su and Yichang Zhang and Yu Wan and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zihan Qiu},
      journal={arXiv preprint arXiv:2412.15115},
      year={2024}
}

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-q4_k_m.gguf -c 2048
```