File size: 10,566 Bytes
71c7e1a 85322a0 71c7e1a 85322a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-7B-Instruct-1M
tags:
- chat
- llama-cpp
- gguf-my-repo
library_name: transformers
---
# Triangle104/Qwen2.5-7B-Instruct-1M-Q4_K_M-GGUF
This model was converted to GGUF format from [`Qwen/Qwen2.5-7B-Instruct-1M`](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M) for more details on the model.
---
Model details:
-
Qwen2.5-1M is the long-context version of the Qwen2.5 series models,
supporting a context length of up to 1M tokens. Compared to the Qwen2.5
128K version, Qwen2.5-1M demonstrates significantly improved performance
in handling long-context tasks while maintaining its capability in
short tasks.
The model has the following features:
Type: Causal Language Models
Training Stage: Pretraining & Post-training
Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
Number of Parameters: 7.61B
Number of Paramaters (Non-Embedding): 6.53B
Number of Layers: 28
Number of Attention Heads (GQA): 28 for Q and 4 for KV
Context Length: Full 1,010,000 tokens and generation 8192 tokens
We recommend deploying with our custom vLLM, which introduces sparse
attention and length extrapolation methods to ensure efficiency and
accuracy for long-context tasks. For specific guidance, refer to this section.
You can also use the previous framework that supports Qwen2.5 for
inference, but accuracy degradation may occur for sequences exceeding
262,144 tokens.
For more details, please refer to our blog, GitHub, and Documentation.
Requirements
The code of Qwen2.5 has been in the latest Hugging face transformers and we advise you to use the latest version of transformers.
With transformers<4.37.0, you will encounter the following error:
KeyError: 'qwen2'
Quickstart
Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Processing Ultra Long Texts
To enhance processing accuracy and efficiency for long sequences, we
have developed an advanced inference framework based on vLLM,
incorporating sparse attention and length extrapolation. This approach
significantly improves model generation performance for sequences
exceeding 256K tokens and achieves a 3 to 7 times speedup for sequences
up to 1M tokens.
Here we provide step-by-step instructions for deploying the Qwen2.5-1M models with our framework.
1. System Preparation
To achieve the best performance, we recommend using GPUs with Ampere or Hopper architecture, which support optimized kernels.
Ensure your system meets the following requirements:
CUDA Version: 12.1 or 12.3
Python Version: >=3.9 and <=3.12
VRAM Requirements:
For processing 1 million-token sequences:
Qwen2.5-7B-Instruct-1M: At least 120GB VRAM (total across GPUs).
Qwen2.5-14B-Instruct-1M: At least 320GB VRAM (total across GPUs).
If your GPUs do not have sufficient VRAM, you can still use Qwen2.5-1M for shorter tasks.
2. Install Dependencies
For now, you need to clone the vLLM repository from our custom branch
and install it manually. We are working on getting our branch merged
into the main vLLM project.
git clone -b dev/dual-chunk-attn [email protected]:QwenLM/vllm.git
cd vllm
pip install -e . -v
3. Launch vLLM
vLLM supports offline inference or launch an openai-like server.
Example of Offline Inference
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct-1M")
# Pass the default decoding hyperparameters of Qwen2.5-7B-Instruct
# max_tokens is for the maximum length for generation.
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=512)
# Input the model name or path. See below for parameter explanation (after the example of openai-like server).
llm = LLM(model="Qwen/Qwen2.5-7B-Instruct-1M",
tensor_parallel_size=4,
max_model_len=1010000,
enable_chunked_prefill=True,
max_num_batched_tokens=131072,
enforce_eager=True,
# quantization="fp8", # Enabling FP8 quantization for model weights can reduce memory usage.
)
# Prepare your prompts
prompt = "Tell me something about large language models."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# generate outputs
outputs = llm.generate([text], sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Example of Openai-like Server
vllm serve Qwen/Qwen2.5-7B-Instruct-1M \
--tensor-parallel-size 4 \
--max-model-len 1010000 \
--enable-chunked-prefill --max-num-batched-tokens 131072 \
--enforce-eager \
--max-num-seqs 1
# --quantization fp8 # Enabling FP8 quantization for model weights can reduce memory usage.
Then you can use curl or python to interact with the deployed model.
Parameter Explanations:
--tensor-parallel-size
Set to the number of GPUs you are using. Max 4 GPUs for the 7B model, and 8 GPUs for the 14B model.
--max-model-len
Defines the maximum input sequence length. Reduce this value if you encounter Out of Memory issues.
--max-num-batched-tokens
Sets the chunk size in Chunked Prefill. A smaller value reduces activation memory usage but may slow down inference.
Recommend 131072 for optimal performance.
--max-num-seqs
Limits concurrent sequences processed.
You can also refer to our Documentation for usage of vLLM.
Troubleshooting:
Encountering the error: "The model's max sequence length (xxxxx)
is larger than the maximum number of tokens that can be stored in the KV
cache."
The VRAM reserved for the KV cache is insufficient. Consider reducing the max_model_len or increasing the tensor_parallel_size. Alternatively, you can reduce max_num_batched_tokens, although this may significantly slow down inference.
Encountering the error: "torch.OutOfMemoryError: CUDA out of memory."
The VRAM reserved for activation weights is insufficient. You can try setting gpu_memory_utilization to 0.85 or lower, but be aware that this might reduce the VRAM available for the KV cache.
Encountering the error: "Input prompt (xxxxx tokens) + lookahead
slots (0) is too long and exceeds the capacity of the block manager."
The input is too lengthy. Consider using a shorter sequence or increasing the max_model_len.
Evaluation & Performance
Detailed evaluation results are reported in this 📑 blog and our technical report.
Citation
If you find our work helpful, feel free to give us a cite.
@misc{qwen2.5-1m,
title = {Qwen2.5-1M: Deploy Your Own Qwen with Context Length up to 1M Tokens},
url = {https://qwenlm.github.io/blog/qwen2.5-1m/},
author = {Qwen Team},
month = {January},
year = {2025}
}
@article{qwen2.5,
title={Qwen2.5 Technical Report},
author={An Yang and Baosong Yang and Beichen Zhang and Binyuan Hui and Bo Zheng and Bowen Yu and Chengyuan Li and Dayiheng Liu and Fei Huang and Haoran Wei and Huan Lin and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Yang and Jiaxi Yang and Jingren Zhou and Junyang Lin and Kai Dang and Keming Lu and Keqin Bao and Kexin Yang and Le Yu and Mei Li and Mingfeng Xue and Pei Zhang and Qin Zhu and Rui Men and Runji Lin and Tianhao Li and Tianyi Tang and Tingyu Xia and Xingzhang Ren and Xuancheng Ren and Yang Fan and Yang Su and Yichang Zhang and Yu Wan and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zihan Qiu},
journal={arXiv preprint arXiv:2412.15115},
year={2024}
}
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-q4_k_m.gguf -c 2048
```
|