File size: 3,035 Bytes
77e304a 9bd04cb 77e304a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
base_model: Silvelter/Yomiel-22B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Triangle104/Yomiel-22B-Q8_0-GGUF
This model was converted to GGUF format from [`Silvelter/Yomiel-22B`](https://huggingface.co/Silvelter/Yomiel-22B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Silvelter/Yomiel-22B) for more details on the model.
Merge Method
-
This model was merged using the della_linear merge method using ArliAI/Mistral-Small-22B-ArliAI-RPMax-v1.1 as a base.
Models Merged
-
The following models were included in the merge:
nbeerbower/Mistral-Small-Drummer-22B
gghfez/SeminalRP-22b
TheDrummer/Cydonia-22B-v1.1
anthracite-org/magnum-v4-22b
Configuration
-
The following YAML configuration was used to produce this model:
base_model: ArliAI/Mistral-Small-22B-ArliAI-RPMax-v1.1
parameters:
epsilon: 0.04
lambda: 1.05
int8_mask: true
rescale: true
normalize: false
dtype: bfloat16
tokenizer_source: base
merge_method: della_linear
models:
- model: ArliAI/Mistral-Small-22B-ArliAI-RPMax-v1.1
parameters:
weight: [0.2, 0.3, 0.2, 0.3, 0.2]
density: [0.45, 0.55, 0.45, 0.55, 0.45]
- model: gghfez/SeminalRP-22b
parameters:
weight: [0.01768, -0.01675, 0.01285, -0.01696, 0.01421]
density: [0.6, 0.4, 0.5, 0.4, 0.6]
- model: anthracite-org/magnum-v4-22b
parameters:
weight: [0.208, 0.139, 0.139, 0.139, 0.208]
density: [0.7]
- model: TheDrummer/Cydonia-22B-v1.1
parameters:
weight: [0.208, 0.139, 0.139, 0.139, 0.208]
density: [0.7]
- model: nbeerbower/Mistral-Small-Drummer-22B
parameters:
weight: [0.33]
density: [0.45, 0.55, 0.45, 0.55, 0.45]
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Yomiel-22B-Q8_0-GGUF --hf-file yomiel-22b-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Yomiel-22B-Q8_0-GGUF --hf-file yomiel-22b-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Yomiel-22B-Q8_0-GGUF --hf-file yomiel-22b-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Yomiel-22B-Q8_0-GGUF --hf-file yomiel-22b-q8_0.gguf -c 2048
```
|