File size: 11,284 Bytes
7a927f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2bfb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a927f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
---
language:
- en
license: gemma
library_name: transformers
tags:
- chat
- llama-cpp
- gguf-my-repo
pipeline_tag: text-generation
base_model: anthracite-org/magnum-v4-9b
model-index:
- name: magnum-v4-9b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 35.03
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 33.27
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 11.63
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 12.98
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 15.65
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 32.81
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-9b
      name: Open LLM Leaderboard
---

# Triangle104/magnum-v4-9b-Q5_K_M-GGUF
This model was converted to GGUF format from [`anthracite-org/magnum-v4-9b`](https://huggingface.co/anthracite-org/magnum-v4-9b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/anthracite-org/magnum-v4-9b) for more details on the model.

---
Model details:
-
This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.

This model is fine-tuned on top of gemma 2 9b (chatML'ified).
Prompting

A typical input would look like this:

<|im_start|>system
system prompt<|im_end|>
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant

SillyTavern templates
-
Below are Instruct and Context templates for use within SillyTavern.
context template

{
  "story_string": "<|im_start|>system\n{{#if system}}{{system}}\n{{/if}}{{#if wiBefore}}{{wiBefore}}\n{{/if}}{{#if description}}{{description}}\n{{/if}}{{#if personality}}{{char}}'s personality: {{personality}}\n{{/if}}{{#if scenario}}Scenario: {{scenario}}\n{{/if}}{{#if wiAfter}}{{wiAfter}}\n{{/if}}{{#if persona}}{{persona}}\n{{/if}}{{trim}}<|im_end|>\n",
  "example_separator": "",
  "chat_start": "",
  "use_stop_strings": false,
  "allow_jailbreak": false,
  "always_force_name2": true,
  "trim_sentences": false,
  "include_newline": false,
  "single_line": false,
  "name": "Magnum ChatML"
}


instruct template
-
{
  "system_prompt": "Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.\n\n<Guidelines>\n• Maintain the character persona but allow it to evolve with the story.\n• Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.\n• All types of outputs are encouraged; respond accordingly to the narrative.\n• Include dialogues, actions, and thoughts in each response.\n• Utilize all five senses to describe scenarios within {{char}}'s dialogue.\n• Use emotional symbols such as "!" and "~" in appropriate contexts.\n• Incorporate onomatopoeia when suitable.\n• Allow time for {{user}} to respond with their own input, respecting their agency.\n• Act as secondary characters and NPCs as needed, and remove them when appropriate.\n• When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.\n</Guidelines>\n\n<Forbidden>\n• Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.\n• Writing for, speaking, thinking, acting, or replying as {{user}} in your response.\n• Repetitive and monotonous outputs.\n• Positivity bias in your replies.\n• Being overly extreme or NSFW when the narrative context is inappropriate.\n</Forbidden>\n\nFollow the instructions in <Guidelines></Guidelines>, avoiding the items listed in <Forbidden></Forbidden>.",
  "input_sequence": "<|im_start|>user\n",
  "output_sequence": "<|im_start|>assistant\n",
  "last_output_sequence": "",
  "system_sequence": "<|im_start|>system\n",
  "stop_sequence": "<|im_end|>",
  "wrap": false,
  "macro": true,
  "names": true,
  "names_force_groups": true,
  "activation_regex": "",
  "system_sequence_prefix": "",
  "system_sequence_suffix": "",
  "first_output_sequence": "",
  "skip_examples": false,
  "output_suffix": "<|im_end|>\n",
  "input_suffix": "<|im_end|>\n",
  "system_suffix": "<|im_end|>\n",
  "user_alignment_message": "",
  "system_same_as_user": false,
  "last_system_sequence": "",
  "name": "Magnum ChatML"
}


Axolotl config
-
See axolotl config

base_model: /workspace/data/gemma-2-9b-chatml
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: false
liger_rms_norm: false
liger_swiglu: true
liger_cross_entropy: true
liger_fused_linear_cross_entropy: false

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: anthracite-org/c2_logs_16k_llama_v1.1
    type: sharegpt
    conversation: chatml
  - path: NewEden/Claude-Instruct-5K
    type: sharegpt
    conversation: chatml  
  - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
    type: sharegpt
    conversation: chatml
  - path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/nopm_claude_writing_fixed
    type: sharegpt
    conversation: chatml
  - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/kalo_opus_misc_240827
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/kalo_misc_part2
    type: sharegpt
    conversation: chatml
chat_template: chatml
shuffle_merged_datasets: false
default_system_message: "You are a helpful assistant that responds to the user."
dataset_prepared_path: /workspace/data/9b-fft-data
val_set_size: 0.0
output_dir: /workspace/data/9b-fft-out

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: 9b-Nemo-config-fft
wandb_entity:
wandb_watch:
wandb_name: attempt-01
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00001

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.001
fsdp:
fsdp_config:
special_tokens:
  pad_token: <pad>


Credits
-
We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.

We would also like to thank all members of Anthracite who made this finetune possible.

Datasets
-
    anthracite-org/c2_logs_16k_llama_v1.1
    NewEden/Claude-Instruct-5K
    anthracite-org/kalo-opus-instruct-22k-no-refusal
    Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
    lodrick-the-lafted/kalo-opus-instruct-3k-filtered
    anthracite-org/nopm_claude_writing_fixed
    Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
    anthracite-org/kalo_opus_misc_240827
    anthracite-org/kalo_misc_part2

Training
-
The training was done for 2 epochs. We used 8xH100s GPUs graciously provided by Recursal AI / Featherless AI for the full-parameter fine-tuning of the model.

Built with Axolotl

Safety
-
...
Open LLM Leaderboard Evaluation Results

Detailed results can be found here
Metric 	Value
Avg. 	23.56
IFEval (0-Shot) 	35.03
BBH (3-Shot) 	33.27
MATH Lvl 5 (4-Shot) 	11.63
GPQA (0-shot) 	12.98
MuSR (0-shot) 	15.65
MMLU-PRO (5-shot) 	32.81

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/magnum-v4-9b-Q5_K_M-GGUF --hf-file magnum-v4-9b-q5_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/magnum-v4-9b-Q5_K_M-GGUF --hf-file magnum-v4-9b-q5_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/magnum-v4-9b-Q5_K_M-GGUF --hf-file magnum-v4-9b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/magnum-v4-9b-Q5_K_M-GGUF --hf-file magnum-v4-9b-q5_k_m.gguf -c 2048
```