Triangle104
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -13,6 +13,60 @@ tags:
|
|
13 |
This model was converted to GGUF format from [`nbeerbower/mistral-nemo-narwhal-12B`](https://huggingface.co/nbeerbower/mistral-nemo-narwhal-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
14 |
Refer to the [original model card](https://huggingface.co/nbeerbower/mistral-nemo-narwhal-12B) for more details on the model.
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
## Use with llama.cpp
|
17 |
Install llama.cpp through brew (works on Mac and Linux)
|
18 |
|
|
|
13 |
This model was converted to GGUF format from [`nbeerbower/mistral-nemo-narwhal-12B`](https://huggingface.co/nbeerbower/mistral-nemo-narwhal-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
14 |
Refer to the [original model card](https://huggingface.co/nbeerbower/mistral-nemo-narwhal-12B) for more details on the model.
|
15 |
|
16 |
+
---
|
17 |
+
Model details:
|
18 |
+
-
|
19 |
+
Mahou-1.5-mistral-nemo-12B-lorablated finetuned on reddit-dpo.
|
20 |
+
Method
|
21 |
+
|
22 |
+
ORPO tuned with 8x A100 for 1 epoch.
|
23 |
+
|
24 |
+
QLoRA config:
|
25 |
+
|
26 |
+
# QLoRA config
|
27 |
+
bnb_config = BitsAndBytesConfig(
|
28 |
+
load_in_4bit=True,
|
29 |
+
bnb_4bit_quant_type="nf4",
|
30 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
31 |
+
bnb_4bit_use_double_quant=True,
|
32 |
+
)
|
33 |
+
# LoRA config
|
34 |
+
peft_config = LoraConfig(
|
35 |
+
r=16,
|
36 |
+
lora_alpha=32,
|
37 |
+
lora_dropout=0.05,
|
38 |
+
bias="none",
|
39 |
+
task_type="CAUSAL_LM",
|
40 |
+
target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj']
|
41 |
+
)
|
42 |
+
|
43 |
+
Training config:
|
44 |
+
|
45 |
+
orpo_args = ORPOConfig(
|
46 |
+
run_name=new_model,
|
47 |
+
learning_rate=8e-6,
|
48 |
+
lr_scheduler_type="linear",
|
49 |
+
max_length=2048,
|
50 |
+
max_prompt_length=1024,
|
51 |
+
max_completion_length=1024,
|
52 |
+
beta=0.1,
|
53 |
+
per_device_train_batch_size=4,
|
54 |
+
per_device_eval_batch_size=4,
|
55 |
+
gradient_accumulation_steps=1,
|
56 |
+
optim="paged_adamw_8bit",
|
57 |
+
num_train_epochs=2,
|
58 |
+
evaluation_strategy="steps",
|
59 |
+
eval_steps=0.2,
|
60 |
+
logging_steps=1,
|
61 |
+
warmup_steps=10,
|
62 |
+
max_grad_norm=10,
|
63 |
+
report_to="wandb",
|
64 |
+
output_dir="./results/",
|
65 |
+
bf16=True,
|
66 |
+
gradient_checkpointing=True,
|
67 |
+
)
|
68 |
+
|
69 |
+
---
|
70 |
## Use with llama.cpp
|
71 |
Install llama.cpp through brew (works on Mac and Linux)
|
72 |
|