File size: 4,271 Bytes
fad5cf8 d49e78e fad5cf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- role-play
- fine-tuned
- qwen2.5
- llama-cpp
- gguf-my-repo
base_model: oxyapi/oxy-1-small
library_name: transformers
---
# Triangle104/oxy-1-small-Q4_K_M-GGUF
This model was converted to GGUF format from [`oxyapi/oxy-1-small`](https://huggingface.co/oxyapi/oxy-1-small) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/oxyapi/oxy-1-small) for more details on the model.
---
Model details:
-
Oxy 1 Small is a fine-tuned version of the Qwen/Qwen2.5-14B-Instruct language model, specialized for role-play
scenarios. Despite its small size, it delivers impressive performance
in generating engaging dialogues and interactive storytelling.
Developed by Oxygen (oxyapi), with contributions from TornadoSoftwares, Oxy 1 Small aims to provide an accessible and efficient language model for creative and immersive role-play experiences.
Model Details
Model Name: Oxy 1 Small
Model ID: oxyapi/oxy-1-small
Base Model: Qwen/Qwen2.5-14B-Instruct
Model Type: Chat Completions
Prompt Format: ChatML
License: Apache-2.0
Language: English
Tokenizer: Qwen/Qwen2.5-14B-Instruct
Max Input Tokens: 32,768
Max Output Tokens: 8,192
Features
Fine-tuned for Role-Play: Specially trained to generate dynamic and contextually rich role-play dialogues.
Efficient: Compact model size allows for faster inference and reduced computational resources.
Parameter Support:
temperature
top_p
top_k
frequency_penalty
presence_penalty
max_tokens
Metadata
Owned by: Oxygen (oxyapi)
Contributors: TornadoSoftwares
Description: A Qwen/Qwen2.5-14B-Instruct fine-tune for role-play trained on custom datasets
Usage
To utilize Oxy 1 Small for text generation in role-play scenarios,
you can load the model using the Hugging Face Transformers library:
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("oxyapi/oxy-1-small")
model = AutoModelForCausalLM.from_pretrained("oxyapi/oxy-1-small")
prompt = "You are a wise old wizard in a mystical land. A traveler approaches you seeking advice."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=500)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Performance
Performance benchmarks for Oxy 1 Small are not available at this
time. Future updates may include detailed evaluations on relevant
datasets.
License
This model is licensed under the Apache 2.0 License.
Citation
If you find Oxy 1 Small useful in your research or applications, please cite it as:
@misc{oxy1small2024,
title={Oxy 1 Small: A Fine-Tuned Qwen2.5-14B-Instruct Model for Role-Play},
author={Oxygen (oxyapi)},
year={2024},
howpublished={\url{https://huggingface.co/oxyapi/oxy-1-small}},
}
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/oxy-1-small-Q4_K_M-GGUF --hf-file oxy-1-small-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/oxy-1-small-Q4_K_M-GGUF --hf-file oxy-1-small-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/oxy-1-small-Q4_K_M-GGUF --hf-file oxy-1-small-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/oxy-1-small-Q4_K_M-GGUF --hf-file oxy-1-small-q4_k_m.gguf -c 2048
```
|