File size: 4,271 Bytes
fad5cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d49e78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad5cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- role-play
- fine-tuned
- qwen2.5
- llama-cpp
- gguf-my-repo
base_model: oxyapi/oxy-1-small
library_name: transformers
---

# Triangle104/oxy-1-small-Q4_K_M-GGUF
This model was converted to GGUF format from [`oxyapi/oxy-1-small`](https://huggingface.co/oxyapi/oxy-1-small) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/oxyapi/oxy-1-small) for more details on the model.

---
Model details:
-
Oxy 1 Small is a fine-tuned version of the Qwen/Qwen2.5-14B-Instruct language model, specialized for role-play
 scenarios. Despite its small size, it delivers impressive performance 
in generating engaging dialogues and interactive storytelling.


Developed by Oxygen (oxyapi), with contributions from TornadoSoftwares, Oxy 1 Small aims to provide an accessible and efficient language model for creative and immersive role-play experiences.



	
		
	

		Model Details
	



Model Name: Oxy 1 Small
Model ID: oxyapi/oxy-1-small
Base Model: Qwen/Qwen2.5-14B-Instruct
Model Type: Chat Completions
Prompt Format: ChatML
License: Apache-2.0
Language: English
Tokenizer: Qwen/Qwen2.5-14B-Instruct
Max Input Tokens: 32,768
Max Output Tokens: 8,192



	
		
	

		Features
	



Fine-tuned for Role-Play: Specially trained to generate dynamic and contextually rich role-play dialogues.
Efficient: Compact model size allows for faster inference and reduced computational resources.
Parameter Support:
temperature
top_p
top_k
frequency_penalty
presence_penalty
max_tokens





	
		
	

		Metadata
	



Owned by: Oxygen (oxyapi)
Contributors: TornadoSoftwares
Description: A Qwen/Qwen2.5-14B-Instruct fine-tune for role-play trained on custom datasets



	
		
	

		Usage
	



To utilize Oxy 1 Small for text generation in role-play scenarios, 
you can load the model using the Hugging Face Transformers library:


from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("oxyapi/oxy-1-small")
model = AutoModelForCausalLM.from_pretrained("oxyapi/oxy-1-small")

prompt = "You are a wise old wizard in a mystical land. A traveler approaches you seeking advice."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=500)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)




	
		
	

		Performance
	



Performance benchmarks for Oxy 1 Small are not available at this 
time. Future updates may include detailed evaluations on relevant 
datasets.



	
		
	

		License
	



This model is licensed under the Apache 2.0 License.



	
		
	

		Citation
	



If you find Oxy 1 Small useful in your research or applications, please cite it as:


@misc{oxy1small2024,
  title={Oxy 1 Small: A Fine-Tuned Qwen2.5-14B-Instruct Model for Role-Play},
  author={Oxygen (oxyapi)},
  year={2024},
  howpublished={\url{https://huggingface.co/oxyapi/oxy-1-small}},
}

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/oxy-1-small-Q4_K_M-GGUF --hf-file oxy-1-small-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/oxy-1-small-Q4_K_M-GGUF --hf-file oxy-1-small-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/oxy-1-small-Q4_K_M-GGUF --hf-file oxy-1-small-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/oxy-1-small-Q4_K_M-GGUF --hf-file oxy-1-small-q4_k_m.gguf -c 2048
```