TristanBehrens commited on
Commit
eec238f
·
verified ·
1 Parent(s): 7f180a2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +138 -0
README.md ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: codellama/CodeLlama-7b-hf
7
+ model-index:
8
+ - name: out/bachinstruct-codellama7b
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ base_model: codellama/CodeLlama-7b-hf
21
+ model_type: LlamaForCausalLM
22
+ tokenizer_type: CodeLlamaTokenizer
23
+
24
+ load_in_8bit: true
25
+ load_in_4bit: false
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: TristanBehrens/bachinstruct
30
+ type: completion
31
+ dataset_prepared_path: ./out/bachinstruct-codellama7b/dataset_prepared
32
+ val_set_size: 0.0
33
+ output_dir: ./out/bachinstruct-codellama7b
34
+
35
+ sequence_len: 4096
36
+ sample_packing: true
37
+ pad_to_sequence_len: true
38
+
39
+ adapter: lora
40
+ lora_model_dir:
41
+ lora_r: 32
42
+ lora_alpha: 16
43
+ lora_dropout: 0.05
44
+ lora_target_linear: true
45
+ lora_fan_in_fan_out:
46
+
47
+ wandb_project:
48
+ wandb_entity:
49
+ wandb_watch:
50
+ wandb_name:
51
+ wandb_log_model:
52
+
53
+ gradient_accumulation_steps: 4
54
+ micro_batch_size: 16
55
+ num_epochs: 1
56
+ optimizer: adamw_bnb_8bit
57
+ lr_scheduler: cosine
58
+ learning_rate: 0.0002
59
+
60
+ train_on_inputs: false
61
+ group_by_length: false
62
+ bf16: auto
63
+ fp16:
64
+ tf32: false
65
+
66
+ gradient_checkpointing: true
67
+ early_stopping_patience:
68
+ resume_from_checkpoint:
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+ s2_attention:
74
+
75
+ eval_sample_packing: False
76
+ warmup_steps: 10
77
+ evals_per_epoch: 4
78
+ saves_per_epoch: 1
79
+ debug:
80
+ deepspeed:
81
+ weight_decay: 0.0
82
+ fsdp:
83
+ fsdp_config:
84
+ special_tokens:
85
+ bos_token: "<s>"
86
+ eos_token: "</s>"
87
+ unk_token: "<unk>"
88
+
89
+ ```
90
+
91
+ </details><br>
92
+
93
+ # out/bachinstruct-codellama7b
94
+
95
+ This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset.
96
+
97
+ ## Model description
98
+
99
+ More information needed
100
+
101
+ ## Intended uses & limitations
102
+
103
+ More information needed
104
+
105
+ ## Training and evaluation data
106
+
107
+ More information needed
108
+
109
+ ## Training procedure
110
+
111
+ ### Training hyperparameters
112
+
113
+ The following hyperparameters were used during training:
114
+ - learning_rate: 0.0002
115
+ - train_batch_size: 16
116
+ - eval_batch_size: 16
117
+ - seed: 42
118
+ - distributed_type: multi-GPU
119
+ - num_devices: 2
120
+ - gradient_accumulation_steps: 4
121
+ - total_train_batch_size: 128
122
+ - total_eval_batch_size: 32
123
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
124
+ - lr_scheduler_type: cosine
125
+ - lr_scheduler_warmup_steps: 10
126
+ - num_epochs: 1
127
+
128
+ ### Training results
129
+
130
+
131
+
132
+ ### Framework versions
133
+
134
+ - PEFT 0.9.1.dev0
135
+ - Transformers 4.39.0.dev0
136
+ - Pytorch 2.2.0+cu121
137
+ - Datasets 2.17.1
138
+ - Tokenizers 0.15.0