Tstarshak commited on
Commit
16b43b5
·
1 Parent(s): 56eeccb
PPO_model.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:494ccfc955d8f483c2da1782c6b0352b83de28fe40ea30b86de4927b7a3fa297
3
- size 144211
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:839e272d51df2ce446676ed90df118ef9c651211e70d1b21ffa0c0032c163637
3
+ size 144220
PPO_model/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b5e32e4d0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b5e32e560>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b5e32e5f0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b5e32e680>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f0b5e32e710>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f0b5e32e7a0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b5e32e830>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f0b5e32e8c0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b5e32e950>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b5e32e9e0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b5e32ea70>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f0b5e36de10>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1655248331.505913,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,11 +56,11 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmk4aPpxdO7yqOFc69p+ZuF+9qb3OBpK5AACAPwAAgD+zu1A9KYBmuuomtbrPQqi1j0LaOXLO1DkAAIA/AACAPzOqYr2Pgjy6wsgku0Q/1DNc5xE7QC9QswAAgD8AAIA/Wzycvvhk3jzC/u+5XY9pOJRHLr5ErBY5AACAPwAAgD8aPhW9w+k5ujcMrrnkzkm2PGhLOqM4zTgAAIA/AACAPwDshbsfhZ+7YGKHvO0Edzy45SQ8UVI7PQAAgD8AAIA/9V+IvtIZ8DyOeni4xCfkNkLrhb5J26c3AACAPwAAgD8AXna81SlJPm8QEL7Rc16+ZjmcvD5etj0AAAAAAAAAADP7Cj2nlk0/E/qBvQsXyb6lmho9rgq5vAAAAAAAAAAAZiVEPvdPqT6KZ7y9oOCNvprO4zy7lfY8AAAAAAAAAACNjNC9wzkCust8njnziT61OP2EOnr+uLgAAIA/AACAP4ZYej46xoE/CHsAP2oN17697l8+68TyPQAAAAAAAAAApvnEvePzMj3Yh+s966AfvsIeIzwq8aS6AAAAAAAAAAAzUbE9XK8+uvAfr7uexHQ1f6y/u2NQ3bQAAIA/AACAPwAxz7wUtLo/o3rWvnGikj49pdQ7QA/SOwAAAAAAAAAAAKTNPEgfkrplUbM7SUoNNuRUYzqL3M+6AACAPwAAgD+UdJRiLg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
@@ -69,13 +69,13 @@
69
  "_current_progress_remaining": -0.04857599999999995,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gASVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU1xV9t1bY0CUhpRSlIwBbJRN6AOMAXSUR0CJ24yGBWgfdX2UKGgGaAloD0MIat/cX70BZkCUhpRSlGgVTegDaBZHQIneXzg/C691fZQoaAZoCWgPQwjGwDqOH4tfQJSGlFKUaBVN6ANoFkdAieG5jQRf4XV9lChoBmgJaA9DCM2tEFZjHGBAlIaUUpRoFU3oA2gWR0CJ4+pmVZ9vdX2UKGgGaAloD0MIKeyi6AFLYECUhpRSlGgVTegDaBZHQInkjQPZqVR1fZQoaAZoCWgPQwjowd1ZO8tiQJSGlFKUaBVN6ANoFkdAieWsxXXAdnV9lChoBmgJaA9DCCBhGLBkc2BAlIaUUpRoFU3oA2gWR0CJ5gBz3h4udX2UKGgGaAloD0MIjspN1NJEIkCUhpRSlGgVS81oFkdAifFK/dqL0nV9lChoBmgJaA9DCOrpI/CHhy1AlIaUUpRoFU0BAWgWR0CJ+pMqz7djdX2UKGgGaAloD0MIeZRKeIKMcECUhpRSlGgVTUECaBZHQIn8J7NSqER1fZQoaAZoCWgPQwhS0Vj7u1JhQJSGlFKUaBVN6ANoFkdAif0CiyprDnV9lChoBmgJaA9DCP/r3LQZj15AlIaUUpRoFU3oA2gWR0CKBCs052hadX2UKGgGaAloD0MIXaeRlkpHYkCUhpRSlGgVTegDaBZHQIoOQR5C4SZ1fZQoaAZoCWgPQwgUPlsHB39GQJSGlFKUaBVL3mgWR0CKEDQAMlTndX2UKGgGaAloD0MIqHFvfkObYkCUhpRSlGgVTegDaBZHQIoqWmUGFBZ1fZQoaAZoCWgPQwhO0vwxrZVgQJSGlFKUaBVN6ANoFkdAiix7j94u9XV9lChoBmgJaA9DCCQp6WHokWVAlIaUUpRoFU3oA2gWR0CKL8VwgkkbdX2UKGgGaAloD0MI6fF7m/7uX0CUhpRSlGgVTegDaBZHQIo53Aj6eoV1fZQoaAZoCWgPQwjJPPIHgxlnQJSGlFKUaBVN6ANoFkdAikabsOXmeXV9lChoBmgJaA9DCChhpu1fhTVAlIaUUpRoFU0LAWgWR0CKSaoCuEEldX2UKGgGaAloD0MIUInrGFcrYkCUhpRSlGgVTegDaBZHQIpQCeGwiaB1fZQoaAZoCWgPQwhrZcIv9dhaQJSGlFKUaBVN6ANoFkdAilLEqlP8AXV9lChoBmgJaA9DCK3ddqG5FWFAlIaUUpRoFU3oA2gWR0CKU4bNKRMfdX2UKGgGaAloD0MII74Ts143XkCUhpRSlGgVTegDaBZHQIpU0v/R3Nd1fZQoaAZoCWgPQwjysbtASZxcQJSGlFKUaBVN6ANoFkdAilU7u+h4+3V9lChoBmgJaA9DCAeVuI5xlTZAlIaUUpRoFUuyaBZHQIpdeU8mrsB1fZQoaAZoCWgPQwjpZRTLLU5gQJSGlFKUaBVN6ANoFkdAil8P1tfoinV9lChoBmgJaA9DCM12hT5Y22FAlIaUUpRoFU3oA2gWR0CLHq0MPSUkdX2UKGgGaAloD0MIgxlTsEbfYUCUhpRSlGgVTegDaBZHQIsfr4zrNW51fZQoaAZoCWgPQwjOjekJSxBhQJSGlFKUaBVN6ANoFkdAiygLXlKbrnV9lChoBmgJaA9DCMy3Pqw3b2RAlIaUUpRoFU3oA2gWR0CLNHmSQo1DdX2UKGgGaAloD0MIrRiuDgAGYECUhpRSlGgVTegDaBZHQIs2+lTFVDN1fZQoaAZoCWgPQwjJHww8dzFiQJSGlFKUaBVN6ANoFkdAi1gO01IiDHV9lChoBmgJaA9DCMTouYUuBWJAlIaUUpRoFU3oA2gWR0CLW8ZTAFgVdX2UKGgGaAloD0MIWI/7VuucYUCUhpRSlGgVTegDaBZHQItmSzgMtsh1fZQoaAZoCWgPQwjXicvxCvRiQJSGlFKUaBVN6ANoFkdAi3NlBIFvAHV9lChoBmgJaA9DCOz6BbvhwGZAlIaUUpRoFU3oA2gWR0CLfDoZAIIGdX2UKGgGaAloD0MIn69ZLhu6ZECUhpRSlGgVTegDaBZHQIt/FFrl/6R1fZQoaAZoCWgPQwiv0AfLWARiQJSGlFKUaBVN6ANoFkdAi3/dTHbRGHV9lChoBmgJaA9DCMJNRpVh4V9AlIaUUpRoFU3oA2gWR0CLgSllbu+idX2UKGgGaAloD0MIt7dbkgP3YUCUhpRSlGgVTegDaBZHQIuBm0PYnOV1fZQoaAZoCWgPQwj6fmq8dNc3QJSGlFKUaBVNDQFoFkdAi4WXEZR8+nV9lChoBmgJaA9DCJFDxM2p32NAlIaUUpRoFU3oA2gWR0CLiZS9/SYxdX2UKGgGaAloD0MIfy4aMh4FXUCUhpRSlGgVTegDaBZHQIuK5JPIn0F1fZQoaAZoCWgPQwi9xFimXxBGQJSGlFKUaBVLsmgWR0CLj3g/C66KdX2UKGgGaAloD0MI+7DeqBUOK0CUhpRSlGgVS8poFkdAi4+N3wCr93V9lChoBmgJaA9DCC7GwDqOnWFAlIaUUpRoFU3oA2gWR0CLkr3hXKbKdX2UKGgGaAloD0MIFr8prFRPW0CUhpRSlGgVTegDaBZHQIuTfCfpUxV1fZQoaAZoCWgPQwjaGhGMAzFhQJSGlFKUaBVN6ANoFkdAi5m1Aqur63V9lChoBmgJaA9DCATmIVM+5GFAlIaUUpRoFU3oA2gWR0CLo4GZ/kNndX2UKGgGaAloD0MIdck4RjIeY0CUhpRSlGgVTegDaBZHQIuloW+GoJl1fZQoaAZoCWgPQwhHdqVlJG5qQJSGlFKUaBVNagFoFkdAi6vz6BRQ8HV9lChoBmgJaA9DCD3wMVjxvWBAlIaUUpRoFU3oA2gWR0CLwx4EfT1DdX2UKGgGaAloD0MIUu4+x0eGYECUhpRSlGgVTegDaBZHQIvGtz8xbjd1fZQoaAZoCWgPQwivz5z1KelfQJSGlFKUaBVN6ANoFkdAi+E3iR4hU3V9lChoBmgJaA9DCAAfvHbp2GBAlIaUUpRoFU3oA2gWR0CL71vitJWedX2UKGgGaAloD0MIY5gTtMknWkCUhpRSlGgVTegDaBZHQIvxKMYMvyt1fZQoaAZoCWgPQwiPxqF+FwpgQJSGlFKUaBVN6ANoFkdAi/GyKWLP2XV9lChoBmgJaA9DCIup9BPOz2JAlIaUUpRoFU3oA2gWR0CL9pog3cYZdX2UKGgGaAloD0MI+rMfKSJ0ZUCUhpRSlGgVTegDaBZHQIv7nUDuBtl1fZQoaAZoCWgPQwjdlsgFZwZdQJSGlFKUaBVN6ANoFkdAjAQlvybx3HV9lChoBmgJaA9DCG5S0Vj7mmJAlIaUUpRoFU3oA2gWR0CMBEEkjX4CdX2UKGgGaAloD0MIhNkEGBYkYECUhpRSlGgVTegDaBZHQIy/AYxcmjV1fZQoaAZoCWgPQwgX9N4YgudhQJSGlFKUaBVN6ANoFkdAjL/3DvVmSXV9lChoBmgJaA9DCF0yjpHszTZAlIaUUpRoFUv0aBZHQIzCf+fh/Al1fZQoaAZoCWgPQwiD3htDAP5hQJSGlFKUaBVN6ANoFkdAjMe23azu4XV9lChoBmgJaA9DCE4K8x5ndFpAlIaUUpRoFU3oA2gWR0CM0pYwqRU4dX2UKGgGaAloD0MIjPM3oRDBX0CUhpRSlGgVTegDaBZHQIzU4o9cKPZ1fZQoaAZoCWgPQwgCg6RPq1tfQJSGlFKUaBVN6ANoFkdAjNtoEjgQ6XV9lChoBmgJaA9DCJJbk25LsD5AlIaUUpRoFUvEaBZHQIzxXdXT3Ix1fZQoaAZoCWgPQwggQfFjTFVhQJSGlFKUaBVN6ANoFkdAjPFh4MWoFXV9lChoBmgJaA9DCHuhgO1g5l1AlIaUUpRoFU3oA2gWR0CM9INn5BTodX2UKGgGaAloD0MIDAVsByP4XkCUhpRSlGgVTegDaBZHQI0JIgieNDN1fZQoaAZoCWgPQwhEatrFNE9eQJSGlFKUaBVN6ANoFkdAjRXKLCN0eXV9lChoBmgJaA9DCALXFTPCFWNAlIaUUpRoFU3oA2gWR0CNFjo371qWdX2UKGgGaAloD0MIhCnKpfH/W0CUhpRSlGgVTegDaBZHQI0aR5X2dup1fZQoaAZoCWgPQwhwlLw6RwtoQJSGlFKUaBVN6ANoFkdAjR5+z+m3v3V9lChoBmgJaA9DCFzII7iRcGFAlIaUUpRoFU3oA2gWR0CNJZA/s3Q2dX2UKGgGaAloD0MIxy3m5wYuZUCUhpRSlGgVTegDaBZHQI0lrDye7MB1fZQoaAZoCWgPQwi13QTfNA5kQJSGlFKUaBVN6ANoFkdAjSmXdKujh3V9lChoBmgJaA9DCGg+527XOWJAlIaUUpRoFU3oA2gWR0CNKn6HCXQddX2UKGgGaAloD0MI1a90PjyuW0CUhpRSlGgVTegDaBZHQI0syjpLVWl1fZQoaAZoCWgPQwgiOZm41eRjQJSGlFKUaBVN6ANoFkdAjTFAXdj5K3V9lChoBmgJaA9DCI/hsZ/Fd2dAlIaUUpRoFU3oA2gWR0CNOvUo8ZDRdX2UKGgGaAloD0MIhIJStHI7X0CUhpRSlGgVTegDaBZHQI089pyp71J1fZQoaAZoCWgPQwhG6j2V044aQJSGlFKUaBVNBgFoFkdAjT6Nix3V1HV9lChoBmgJaA9DCPncCfZfBytAlIaUUpRoFU0XAWgWR0CNRLb9If8udX2UKGgGaAloD0MIZaa0/hYWYkCUhpRSlGgVTegDaBZHQI1Y8XJo0yh1fZQoaAZoCWgPQwi5/If0Wx5lQJSGlFKUaBVN6ANoFkdAjVj3Gff4y3V9lChoBmgJaA9DCGMMrOM4HXBAlIaUUpRoFU1DAmgWR0CNWagieNDMdX2UKGgGaAloD0MIxO47hkd/YkCUhpRSlGgVTegDaBZHQI1cO7Wd3B51fZQoaAZoCWgPQwilEMgljtlqQJSGlFKUaBVNjwFoFkdAjWkOgg5imXV9lChoBmgJaA9DCMqLTMCvGGRAlIaUUpRoFU3oA2gWR0CNcuDkELYxdX2UKGgGaAloD0MI3QiLirjPYECUhpRSlGgVTegDaBZHQI2BUPYnOSp1fZQoaAZoCWgPQwjWO9wODXNkQJSGlFKUaBVN6ANoFkdAjYHdx6v7nHV9lChoBmgJaA9DCK/pQUGphmRAlIaUUpRoFU3oA2gWR0CNhr5BTn7pdX2UKGgGaAloD0MIQq8/ic+DQcCUhpRSlGgVTSEBaBZHQI2MWh7E5yV1fZQoaAZoCWgPQwinBMQkXPdgQJSGlFKUaBVN6ANoFkdAjZRksjFAFHV9lChoBmgJaA9DCEG5bd+jbF9AlIaUUpRoFU3oA2gWR0CNmN0EovzwdX2UKGgGaAloD0MI4uXpXNFWYUCUhpRSlGgVTegDaBZHQI2ctuWKMvR1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 170,
79
  "n_steps": 2048,
80
  "gamma": 0.99,
81
  "gae_lambda": 0.95,
 
4
  ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f96e55303b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f96e5530440>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f96e55304d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f96e5530560>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f96e55305f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f96e5530680>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f96e5530710>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f96e55307a0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f96e5530830>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f96e55308c0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f96e5530950>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f96e54faae0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1655250505.3396235,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAM0aPvEi3irrmBU65xicatWV6rjp1yW84AACAPwAAgD9mZiK4EYO1P5jPgLvthaI+c11YOAZpaToAAAAAAAAAAI1Y0j20XaM/aN9GP48d9b5WeA68QiwIPgAAAAAAAAAAOAKvvlz6cD1K5K+6YulZOaTRc74TXds5AACAPwAAgD9zzTa+mbf7Po6Dkj1ZSTC+a0MUvBAWAjwAAAAAAAAAANowhz0pDE26Auf9O0bqiza1nh47MO6DNQAAgD8AAIA/87LKvY+2R7r89EU7D75mNkcjlbnaomG6AACAPwAAgD9znVo+hTOrueVUiLrpsTW2WSI8Oxp9njkAAIA/AACAPxo/XT3DUW66f+gsuze4Pra4o3C6JPRJOgAAgD8AAIA/tutSvr0Cajy+n8E6vWj6uJYh/b2bju25AACAPwAAgD+aswa92GLTPgtESjwiOu290aaRvA0mkjwAAAAAAAAAAK0dCj/n2B6+AH4EvR0jPLxs2c2+lV8OPQAAAAAAAAAAM61fPIXj8blKqqa5PLhLtLkBF7ku4sE4AACAPwAAgD+Ao9899nx0ulIQyzpNLMc0FPvbumjl57kAAIA/AACAP7qzVL7V0AM/mAPJPc2wnr7vq9a7GldzPQAAAAAAAAAAALsQvS8ouD8gMBG/QFkPPqzCNTyzC2+9AAAAAAAAAACUdJRiLg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAABAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
 
69
  "_current_progress_remaining": -0.04857599999999995,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPN7kt+j7aUCUhpRSlIwBbJRNDAKMAXSUR0CDtUq814xDdX2UKGgGaAloD0MI1jbF46KCXECUhpRSlGgVTegDaBZHQIO56uMdcSp1fZQoaAZoCWgPQwiaB7DIL1dmQJSGlFKUaBVN6ANoFkdAg8xxdyDIzXV9lChoBmgJaA9DCP8+48KBK1xAlIaUUpRoFU3oA2gWR0CD0HFa0QbudX2UKGgGaAloD0MITrUWZiHqZECUhpRSlGgVTegDaBZHQIPc7gn+hoN1fZQoaAZoCWgPQwh3oE55dFFIQJSGlFKUaBVN6ANoFkdAg+8IvalDW3V9lChoBmgJaA9DCEdWfhmM/19AlIaUUpRoFU3oA2gWR0CD9AoJiRW+dX2UKGgGaAloD0MIa54j8l1YYUCUhpRSlGgVTegDaBZHQIP34Cjk+5h1fZQoaAZoCWgPQwjZJaq3BhBfQJSGlFKUaBVN6ANoFkdAg/j1jy4FzXV9lChoBmgJaA9DCLth26JMgGJAlIaUUpRoFU3oA2gWR0CD++lj3EhrdX2UKGgGaAloD0MIOQt72uEjX0CUhpRSlGgVTegDaBZHQIP9Mi+tbLV1fZQoaAZoCWgPQwg18Q7wpCRcQJSGlFKUaBVN6ANoFkdAhBjeuvECNnV9lChoBmgJaA9DCAirsYS1Ll5AlIaUUpRoFU3oA2gWR0CEMYdQO4G2dX2UKGgGaAloD0MIoMGmzqOeWkCUhpRSlGgVTegDaBZHQIQyozP8hs91fZQoaAZoCWgPQwg6lQwAVfZYQJSGlFKUaBVN6ANoFkdAhDNeHi3ocXV9lChoBmgJaA9DCOWdQxmqcFxAlIaUUpRoFU3oA2gWR0CEPaBK+SKWdX2UKGgGaAloD0MIaauSyD6oXkCUhpRSlGgVTegDaBZHQIRFPoxHoX91fZQoaAZoCWgPQwgtJGB0+TRgQJSGlFKUaBVN6ANoFkdAhEn5vUBnz3V9lChoBmgJaA9DCKFpiZXRd1NAlIaUUpRoFU3oA2gWR0CEWkO5J9RadX2UKGgGaAloD0MIPKOtSqJBYkCUhpRSlGgVTegDaBZHQIRcvZbpu/F1fZQoaAZoCWgPQwiaBdodUuNYQJSGlFKUaBVN6ANoFkdAhGddKujh1nV9lChoBmgJaA9DCCO8PQgB1VRAlIaUUpRoFU3oA2gWR0CEeJIWgvlEdX2UKGgGaAloD0MIjZlEveCdYUCUhpRSlGgVTegDaBZHQIR9fqxC6Yp1fZQoaAZoCWgPQwhjYB3HD2doQJSGlFKUaBVN5QNoFkdAhIDB+4LCvXV9lChoBmgJaA9DCCgn2lVIuVxAlIaUUpRoFU3oA2gWR0CEghHAh0QsdX2UKGgGaAloD0MIcvp6vuZDYECUhpRSlGgVTegDaBZHQISEsxVQyh11fZQoaAZoCWgPQwjs+gW74aBkQJSGlFKUaBVN6ANoFkdAhIXbNbC79XV9lChoBmgJaA9DCLyt9Npsf2BAlIaUUpRoFU3oA2gWR0CEnxm2b5M2dX2UKGgGaAloD0MIxEKtad7hF8CUhpRSlGgVTR8BaBZHQIShHZXdTHd1fZQoaAZoCWgPQwj5EFSNXlZiQJSGlFKUaBVN6ANoFkdAhWXco6S1V3V9lChoBmgJaA9DCG9lic4yR19AlIaUUpRoFU3oA2gWR0CFZsYUFjd6dX2UKGgGaAloD0MIQuvhy0R1XkCUhpRSlGgVTegDaBZHQIVnWAoXsPd1fZQoaAZoCWgPQwgb1lQWhYRcQJSGlFKUaBVN6ANoFkdAhW+57w8W9HV9lChoBmgJaA9DCBBbejRVvWdAlIaUUpRoFU0mA2gWR0CFdRlum78OdX2UKGgGaAloD0MIERyXcVMJYECUhpRSlGgVTegDaBZHQIV2KgyuZCx1fZQoaAZoCWgPQwhXPsvzYPJgQJSGlFKUaBVN6ANoFkdAhXoE5hjOLXV9lChoBmgJaA9DCA0Zj1KJwGtAlIaUUpRoFU2NAWgWR0CFf3xR2r4ndX2UKGgGaAloD0MIdlJflvb0YUCUhpRSlGgVTegDaBZHQIWGduP3i711fZQoaAZoCWgPQwjm6VxRSplmQJSGlFKUaBVN6ANoFkdAhZFQ7LdN4HV9lChoBmgJaA9DCHLEWnyKgmFAlIaUUpRoFU3oA2gWR0CFoTbiZOSGdX2UKGgGaAloD0MIFVW/0nmzYECUhpRSlGgVTegDaBZHQIWpDHyVfNR1fZQoaAZoCWgPQwhS19r71NFgQJSGlFKUaBVN6ANoFkdAhap6OYIBzXV9lChoBmgJaA9DCL7bvHFSTWNAlIaUUpRoFU3oA2gWR0CFrVtb9qDcdX2UKGgGaAloD0MIizbHuc3CYECUhpRSlGgVTegDaBZHQIWuoj2SMcZ1fZQoaAZoCWgPQwhKs3kcBm9gQJSGlFKUaBVN6ANoFkdAhcz71RLsbHV9lChoBmgJaA9DCDasqSwKXztAlIaUUpRoFU1NAWgWR0CF3f/MGHHndX2UKGgGaAloD0MItyQH7GpdV0CUhpRSlGgVTegDaBZHQIXiu4I8hcJ1fZQoaAZoCWgPQwjwbI/e8HRhQJSGlFKUaBVN6ANoFkdAhePdTo+wDHV9lChoBmgJaA9DCG1YU1kUj2RAlIaUUpRoFU3oA2gWR0CF5JCSidrgdX2UKGgGaAloD0MIQSlauReLXUCUhpRSlGgVTegDaBZHQIXuzMvAXVN1fZQoaAZoCWgPQwie0VYlkYBiQJSGlFKUaBVN6ANoFkdAhfUjHwPRRnV9lChoBmgJaA9DCCHp0yp66WBAlIaUUpRoFU3oA2gWR0CF9k5e7cwhdX2UKGgGaAloD0MIB3x+GCGbWUCUhpRSlGgVTegDaBZHQIX6qBTXJ5p1fZQoaAZoCWgPQwghzO1ebgpgQJSGlFKUaBVN6ANoFkdAhgEOuq3mWHV9lChoBmgJaA9DCBSvsrYpv2BAlIaUUpRoFU3oA2gWR0CGCX/MGHHndX2UKGgGaAloD0MIVYodjUPgYECUhpRSlGgVTegDaBZHQIYWup++dsl1fZQoaAZoCWgPQwjaPA6D+VJjQJSGlFKUaBVN6ANoFkdAhigHbAUL2HV9lChoBmgJaA9DCGQFvw0x+VhAlIaUUpRoFU3oA2gWR0CGMCrAgxJvdX2UKGgGaAloD0MIxY7GoX4ZYECUhpRSlGgVTegDaBZHQIYxnT3IuGt1fZQoaAZoCWgPQwge/pqs0VtiQJSGlFKUaBVN6ANoFkdAhjSZTQ3PzHV9lChoBmgJaA9DCF6gpMACvl1AlIaUUpRoFU3oA2gWR0CGU4v8qFyrdX2UKGgGaAloD0MIylLr/ca7ZkCUhpRSlGgVTcwBaBZHQIZVsPFvQ4V1fZQoaAZoCWgPQwj2su20NcdnQJSGlFKUaBVNiAJoFkdAhmH+FlCkXXV9lChoBmgJaA9DCD1Geeblo2RAlIaUUpRoFU3oA2gWR0CHFnBw++uedX2UKGgGaAloD0MICK2HLxPXX0CUhpRSlGgVTegDaBZHQIcaSliz9jx1fZQoaAZoCWgPQwhhw9MrZbZfQJSGlFKUaBVN6ANoFkdAhxs6ij+Jg3V9lChoBmgJaA9DCN1c/G3PcGJAlIaUUpRoFU3oA2gWR0CHG89XcQAddX2UKGgGaAloD0MILA38qIaoXkCUhpRSlGgVTegDaBZHQIckC0QbuMN1fZQoaAZoCWgPQwhDOGbZE0thQJSGlFKUaBVN6ANoFkdAhynSm65G0HV9lChoBmgJaA9DCKp9Oh4z+ltAlIaUUpRoFU3oA2gWR0CHKvhb4agmdX2UKGgGaAloD0MIQNmUK7yfRUCUhpRSlGgVTegDaBZHQIcvIsAeaKF1fZQoaAZoCWgPQwhsPq4NldhgQJSGlFKUaBVN6ANoFkdAhzWLk8zQ/3V9lChoBmgJaA9DCHWSrS6nRCHAlIaUUpRoFU0wAWgWR0CHOAH9m6GydX2UKGgGaAloD0MIxCRcyCMIXECUhpRSlGgVTegDaBZHQIddT6xgRbt1fZQoaAZoCWgPQwhFgxQ8hcpdQJSGlFKUaBVN6ANoFkdAh2XtYjjaPHV9lChoBmgJaA9DCMk5sYd2HmtAlIaUUpRoFU15AmgWR0CHZxmdy1eCdX2UKGgGaAloD0MIjBL0F3pSYECUhpRSlGgVTegDaBZHQIdnYpON5t51fZQoaAZoCWgPQwi8lpAP+hhhQJSGlFKUaBVN6ANoFkdAh2orhJiAlXV9lChoBmgJaA9DCP9cNGS8MWNAlIaUUpRoFU3oA2gWR0CHh7gjyFwldX2UKGgGaAloD0MIliTP9f0rZUCUhpRSlGgVTegDaBZHQIeJwQrc0tR1fZQoaAZoCWgPQwgPgLirV6U4QJSGlFKUaBVNEwFoFkdAh4qXWFvhqHV9lChoBmgJaA9DCBAHCVG+LGNAlIaUUpRoFU3oA2gWR0CHmbWiDdxidX2UKGgGaAloD0MIMIDwocS6YUCUhpRSlGgVTegDaBZHQIeanXPJJXh1fZQoaAZoCWgPQwipvvOLErJfQJSGlFKUaBVN6ANoFkdAh5tBiTdLx3V9lChoBmgJaA9DCLSPFfw2LG9AlIaUUpRoFU29AWgWR0CHojk5IYm+dX2UKGgGaAloD0MIYVJ8fEJrXECUhpRSlGgVTegDaBZHQIejs/0NBnl1fZQoaAZoCWgPQwiJtI0/UR1cQJSGlFKUaBVN6ANoFkdAh6j1/+bVjXV9lChoBmgJaA9DCHB5rBkZT2FAlIaUUpRoFU3oA2gWR0CHqgLk0aZQdX2UKGgGaAloD0MIgUBn0qbMXkCUhpRSlGgVTegDaBZHQIet0Bnzxw11fZQoaAZoCWgPQwgIqkavhpRiQJSGlFKUaBVN6ANoFkdAh7O+ws5GSnV9lChoBmgJaA9DCE8EcR5O9VpAlIaUUpRoFU3oA2gWR0CHthtGd7OWdX2UKGgGaAloD0MIk4ychT0HW0CUhpRSlGgVTegDaBZHQIfXSrmyPdV1fZQoaAZoCWgPQwhw0jQomhRWQJSGlFKUaBVN6ANoFkdAh97iYkVvdnV9lChoBmgJaA9DCJHz/j9OMV5AlIaUUpRoFU3oA2gWR0CH3/I91U2ldX2UKGgGaAloD0MI5EnSNZOJYUCUhpRSlGgVTegDaBZHQIgCRDNQj2V1fZQoaAZoCWgPQwhDU3b6QbtXQJSGlFKUaBVN6ANoFkdAiARqk/KQrHV9lChoBmgJaA9DCEn0Morl11VAlIaUUpRoFU3oA2gWR0CIBTcqOLiudX2UKGgGaAloD0MIOpFgqhkvaECUhpRSlGgVTegDaBZHQIgT2sJY1YR1fZQoaAZoCWgPQwj4wfnUsTVgQJSGlFKUaBVN6ANoFkdAiBTAMtsen3V9lChoBmgJaA9DCKzJU1bTHmJAlIaUUpRoFU3oA2gWR0CIFVtBOYY0dWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 160,
79
  "n_steps": 2048,
80
  "gamma": 0.99,
81
  "gae_lambda": 0.95,
PPO_model/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f130930f7e101aa8df0b5e690c5db3a11b4a35d1c709f3500defa30c39c24167
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e19d7d02f74f44480948a5d3adc3637d87340c30243838aae1653b3531b6af7
3
  size 84893
PPO_model/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c01c1dd0009b6a7135a0b725c6acd480a94b2c9fc4669036cca0e89de3d93bd
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc046b53c0a77f30a173c6d3a4111f292e05086ea0ca80f53f34c33291193a2e
3
  size 43201
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 184.36 +/- 74.26
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b5e32e4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b5e32e560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b5e32e5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b5e32e680>", "_build": "<function ActorCriticPolicy._build at 0x7f0b5e32e710>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b5e32e7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b5e32e830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b5e32e8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b5e32e950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b5e32e9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b5e32ea70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b5e36de10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655248331.505913, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmk4aPpxdO7yqOFc69p+ZuF+9qb3OBpK5AACAPwAAgD+zu1A9KYBmuuomtbrPQqi1j0LaOXLO1DkAAIA/AACAPzOqYr2Pgjy6wsgku0Q/1DNc5xE7QC9QswAAgD8AAIA/Wzycvvhk3jzC/u+5XY9pOJRHLr5ErBY5AACAPwAAgD8aPhW9w+k5ujcMrrnkzkm2PGhLOqM4zTgAAIA/AACAPwDshbsfhZ+7YGKHvO0Edzy45SQ8UVI7PQAAgD8AAIA/9V+IvtIZ8DyOeni4xCfkNkLrhb5J26c3AACAPwAAgD8AXna81SlJPm8QEL7Rc16+ZjmcvD5etj0AAAAAAAAAADP7Cj2nlk0/E/qBvQsXyb6lmho9rgq5vAAAAAAAAAAAZiVEPvdPqT6KZ7y9oOCNvprO4zy7lfY8AAAAAAAAAACNjNC9wzkCust8njnziT61OP2EOnr+uLgAAIA/AACAP4ZYej46xoE/CHsAP2oN17697l8+68TyPQAAAAAAAAAApvnEvePzMj3Yh+s966AfvsIeIzwq8aS6AAAAAAAAAAAzUbE9XK8+uvAfr7uexHQ1f6y/u2NQ3bQAAIA/AACAPwAxz7wUtLo/o3rWvnGikj49pdQ7QA/SOwAAAAAAAAAAAKTNPEgfkrplUbM7SUoNNuRUYzqL3M+6AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU1xV9t1bY0CUhpRSlIwBbJRN6AOMAXSUR0CJ24yGBWgfdX2UKGgGaAloD0MIat/cX70BZkCUhpRSlGgVTegDaBZHQIneXzg/C691fZQoaAZoCWgPQwjGwDqOH4tfQJSGlFKUaBVN6ANoFkdAieG5jQRf4XV9lChoBmgJaA9DCM2tEFZjHGBAlIaUUpRoFU3oA2gWR0CJ4+pmVZ9vdX2UKGgGaAloD0MIKeyi6AFLYECUhpRSlGgVTegDaBZHQInkjQPZqVR1fZQoaAZoCWgPQwjowd1ZO8tiQJSGlFKUaBVN6ANoFkdAieWsxXXAdnV9lChoBmgJaA9DCCBhGLBkc2BAlIaUUpRoFU3oA2gWR0CJ5gBz3h4udX2UKGgGaAloD0MIjspN1NJEIkCUhpRSlGgVS81oFkdAifFK/dqL0nV9lChoBmgJaA9DCOrpI/CHhy1AlIaUUpRoFU0BAWgWR0CJ+pMqz7djdX2UKGgGaAloD0MIeZRKeIKMcECUhpRSlGgVTUECaBZHQIn8J7NSqER1fZQoaAZoCWgPQwhS0Vj7u1JhQJSGlFKUaBVN6ANoFkdAif0CiyprDnV9lChoBmgJaA9DCP/r3LQZj15AlIaUUpRoFU3oA2gWR0CKBCs052hadX2UKGgGaAloD0MIXaeRlkpHYkCUhpRSlGgVTegDaBZHQIoOQR5C4SZ1fZQoaAZoCWgPQwgUPlsHB39GQJSGlFKUaBVL3mgWR0CKEDQAMlTndX2UKGgGaAloD0MIqHFvfkObYkCUhpRSlGgVTegDaBZHQIoqWmUGFBZ1fZQoaAZoCWgPQwhO0vwxrZVgQJSGlFKUaBVN6ANoFkdAiix7j94u9XV9lChoBmgJaA9DCCQp6WHokWVAlIaUUpRoFU3oA2gWR0CKL8VwgkkbdX2UKGgGaAloD0MI6fF7m/7uX0CUhpRSlGgVTegDaBZHQIo53Aj6eoV1fZQoaAZoCWgPQwjJPPIHgxlnQJSGlFKUaBVN6ANoFkdAikabsOXmeXV9lChoBmgJaA9DCChhpu1fhTVAlIaUUpRoFU0LAWgWR0CKSaoCuEEldX2UKGgGaAloD0MIUInrGFcrYkCUhpRSlGgVTegDaBZHQIpQCeGwiaB1fZQoaAZoCWgPQwhrZcIv9dhaQJSGlFKUaBVN6ANoFkdAilLEqlP8AXV9lChoBmgJaA9DCK3ddqG5FWFAlIaUUpRoFU3oA2gWR0CKU4bNKRMfdX2UKGgGaAloD0MII74Ts143XkCUhpRSlGgVTegDaBZHQIpU0v/R3Nd1fZQoaAZoCWgPQwjysbtASZxcQJSGlFKUaBVN6ANoFkdAilU7u+h4+3V9lChoBmgJaA9DCAeVuI5xlTZAlIaUUpRoFUuyaBZHQIpdeU8mrsB1fZQoaAZoCWgPQwjpZRTLLU5gQJSGlFKUaBVN6ANoFkdAil8P1tfoinV9lChoBmgJaA9DCM12hT5Y22FAlIaUUpRoFU3oA2gWR0CLHq0MPSUkdX2UKGgGaAloD0MIgxlTsEbfYUCUhpRSlGgVTegDaBZHQIsfr4zrNW51fZQoaAZoCWgPQwjOjekJSxBhQJSGlFKUaBVN6ANoFkdAiygLXlKbrnV9lChoBmgJaA9DCMy3Pqw3b2RAlIaUUpRoFU3oA2gWR0CLNHmSQo1DdX2UKGgGaAloD0MIrRiuDgAGYECUhpRSlGgVTegDaBZHQIs2+lTFVDN1fZQoaAZoCWgPQwjJHww8dzFiQJSGlFKUaBVN6ANoFkdAi1gO01IiDHV9lChoBmgJaA9DCMTouYUuBWJAlIaUUpRoFU3oA2gWR0CLW8ZTAFgVdX2UKGgGaAloD0MIWI/7VuucYUCUhpRSlGgVTegDaBZHQItmSzgMtsh1fZQoaAZoCWgPQwjXicvxCvRiQJSGlFKUaBVN6ANoFkdAi3NlBIFvAHV9lChoBmgJaA9DCOz6BbvhwGZAlIaUUpRoFU3oA2gWR0CLfDoZAIIGdX2UKGgGaAloD0MIn69ZLhu6ZECUhpRSlGgVTegDaBZHQIt/FFrl/6R1fZQoaAZoCWgPQwiv0AfLWARiQJSGlFKUaBVN6ANoFkdAi3/dTHbRGHV9lChoBmgJaA9DCMJNRpVh4V9AlIaUUpRoFU3oA2gWR0CLgSllbu+idX2UKGgGaAloD0MIt7dbkgP3YUCUhpRSlGgVTegDaBZHQIuBm0PYnOV1fZQoaAZoCWgPQwj6fmq8dNc3QJSGlFKUaBVNDQFoFkdAi4WXEZR8+nV9lChoBmgJaA9DCJFDxM2p32NAlIaUUpRoFU3oA2gWR0CLiZS9/SYxdX2UKGgGaAloD0MIfy4aMh4FXUCUhpRSlGgVTegDaBZHQIuK5JPIn0F1fZQoaAZoCWgPQwi9xFimXxBGQJSGlFKUaBVLsmgWR0CLj3g/C66KdX2UKGgGaAloD0MI+7DeqBUOK0CUhpRSlGgVS8poFkdAi4+N3wCr93V9lChoBmgJaA9DCC7GwDqOnWFAlIaUUpRoFU3oA2gWR0CLkr3hXKbKdX2UKGgGaAloD0MIFr8prFRPW0CUhpRSlGgVTegDaBZHQIuTfCfpUxV1fZQoaAZoCWgPQwjaGhGMAzFhQJSGlFKUaBVN6ANoFkdAi5m1Aqur63V9lChoBmgJaA9DCATmIVM+5GFAlIaUUpRoFU3oA2gWR0CLo4GZ/kNndX2UKGgGaAloD0MIdck4RjIeY0CUhpRSlGgVTegDaBZHQIuloW+GoJl1fZQoaAZoCWgPQwhHdqVlJG5qQJSGlFKUaBVNagFoFkdAi6vz6BRQ8HV9lChoBmgJaA9DCD3wMVjxvWBAlIaUUpRoFU3oA2gWR0CLwx4EfT1DdX2UKGgGaAloD0MIUu4+x0eGYECUhpRSlGgVTegDaBZHQIvGtz8xbjd1fZQoaAZoCWgPQwivz5z1KelfQJSGlFKUaBVN6ANoFkdAi+E3iR4hU3V9lChoBmgJaA9DCAAfvHbp2GBAlIaUUpRoFU3oA2gWR0CL71vitJWedX2UKGgGaAloD0MIY5gTtMknWkCUhpRSlGgVTegDaBZHQIvxKMYMvyt1fZQoaAZoCWgPQwiPxqF+FwpgQJSGlFKUaBVN6ANoFkdAi/GyKWLP2XV9lChoBmgJaA9DCIup9BPOz2JAlIaUUpRoFU3oA2gWR0CL9pog3cYZdX2UKGgGaAloD0MI+rMfKSJ0ZUCUhpRSlGgVTegDaBZHQIv7nUDuBtl1fZQoaAZoCWgPQwjdlsgFZwZdQJSGlFKUaBVN6ANoFkdAjAQlvybx3HV9lChoBmgJaA9DCG5S0Vj7mmJAlIaUUpRoFU3oA2gWR0CMBEEkjX4CdX2UKGgGaAloD0MIhNkEGBYkYECUhpRSlGgVTegDaBZHQIy/AYxcmjV1fZQoaAZoCWgPQwgX9N4YgudhQJSGlFKUaBVN6ANoFkdAjL/3DvVmSXV9lChoBmgJaA9DCF0yjpHszTZAlIaUUpRoFUv0aBZHQIzCf+fh/Al1fZQoaAZoCWgPQwiD3htDAP5hQJSGlFKUaBVN6ANoFkdAjMe23azu4XV9lChoBmgJaA9DCE4K8x5ndFpAlIaUUpRoFU3oA2gWR0CM0pYwqRU4dX2UKGgGaAloD0MIjPM3oRDBX0CUhpRSlGgVTegDaBZHQIzU4o9cKPZ1fZQoaAZoCWgPQwgCg6RPq1tfQJSGlFKUaBVN6ANoFkdAjNtoEjgQ6XV9lChoBmgJaA9DCJJbk25LsD5AlIaUUpRoFUvEaBZHQIzxXdXT3Ix1fZQoaAZoCWgPQwggQfFjTFVhQJSGlFKUaBVN6ANoFkdAjPFh4MWoFXV9lChoBmgJaA9DCHuhgO1g5l1AlIaUUpRoFU3oA2gWR0CM9INn5BTodX2UKGgGaAloD0MIDAVsByP4XkCUhpRSlGgVTegDaBZHQI0JIgieNDN1fZQoaAZoCWgPQwhEatrFNE9eQJSGlFKUaBVN6ANoFkdAjRXKLCN0eXV9lChoBmgJaA9DCALXFTPCFWNAlIaUUpRoFU3oA2gWR0CNFjo371qWdX2UKGgGaAloD0MIhCnKpfH/W0CUhpRSlGgVTegDaBZHQI0aR5X2dup1fZQoaAZoCWgPQwhwlLw6RwtoQJSGlFKUaBVN6ANoFkdAjR5+z+m3v3V9lChoBmgJaA9DCFzII7iRcGFAlIaUUpRoFU3oA2gWR0CNJZA/s3Q2dX2UKGgGaAloD0MIxy3m5wYuZUCUhpRSlGgVTegDaBZHQI0lrDye7MB1fZQoaAZoCWgPQwi13QTfNA5kQJSGlFKUaBVN6ANoFkdAjSmXdKujh3V9lChoBmgJaA9DCGg+527XOWJAlIaUUpRoFU3oA2gWR0CNKn6HCXQddX2UKGgGaAloD0MI1a90PjyuW0CUhpRSlGgVTegDaBZHQI0syjpLVWl1fZQoaAZoCWgPQwgiOZm41eRjQJSGlFKUaBVN6ANoFkdAjTFAXdj5K3V9lChoBmgJaA9DCI/hsZ/Fd2dAlIaUUpRoFU3oA2gWR0CNOvUo8ZDRdX2UKGgGaAloD0MIhIJStHI7X0CUhpRSlGgVTegDaBZHQI089pyp71J1fZQoaAZoCWgPQwhG6j2V044aQJSGlFKUaBVNBgFoFkdAjT6Nix3V1HV9lChoBmgJaA9DCPncCfZfBytAlIaUUpRoFU0XAWgWR0CNRLb9If8udX2UKGgGaAloD0MIZaa0/hYWYkCUhpRSlGgVTegDaBZHQI1Y8XJo0yh1fZQoaAZoCWgPQwi5/If0Wx5lQJSGlFKUaBVN6ANoFkdAjVj3Gff4y3V9lChoBmgJaA9DCGMMrOM4HXBAlIaUUpRoFU1DAmgWR0CNWagieNDMdX2UKGgGaAloD0MIxO47hkd/YkCUhpRSlGgVTegDaBZHQI1cO7Wd3B51fZQoaAZoCWgPQwilEMgljtlqQJSGlFKUaBVNjwFoFkdAjWkOgg5imXV9lChoBmgJaA9DCMqLTMCvGGRAlIaUUpRoFU3oA2gWR0CNcuDkELYxdX2UKGgGaAloD0MI3QiLirjPYECUhpRSlGgVTegDaBZHQI2BUPYnOSp1fZQoaAZoCWgPQwjWO9wODXNkQJSGlFKUaBVN6ANoFkdAjYHdx6v7nHV9lChoBmgJaA9DCK/pQUGphmRAlIaUUpRoFU3oA2gWR0CNhr5BTn7pdX2UKGgGaAloD0MIQq8/ic+DQcCUhpRSlGgVTSEBaBZHQI2MWh7E5yV1fZQoaAZoCWgPQwinBMQkXPdgQJSGlFKUaBVN6ANoFkdAjZRksjFAFHV9lChoBmgJaA9DCEG5bd+jbF9AlIaUUpRoFU3oA2gWR0CNmN0EovzwdX2UKGgGaAloD0MI4uXpXNFWYUCUhpRSlGgVTegDaBZHQI2ctuWKMvR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 170, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f96e55303b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f96e5530440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f96e55304d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f96e5530560>", "_build": "<function ActorCriticPolicy._build at 0x7f96e55305f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f96e5530680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f96e5530710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f96e55307a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f96e5530830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f96e55308c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f96e5530950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f96e54faae0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655250505.3396235, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAM0aPvEi3irrmBU65xicatWV6rjp1yW84AACAPwAAgD9mZiK4EYO1P5jPgLvthaI+c11YOAZpaToAAAAAAAAAAI1Y0j20XaM/aN9GP48d9b5WeA68QiwIPgAAAAAAAAAAOAKvvlz6cD1K5K+6YulZOaTRc74TXds5AACAPwAAgD9zzTa+mbf7Po6Dkj1ZSTC+a0MUvBAWAjwAAAAAAAAAANowhz0pDE26Auf9O0bqiza1nh47MO6DNQAAgD8AAIA/87LKvY+2R7r89EU7D75mNkcjlbnaomG6AACAPwAAgD9znVo+hTOrueVUiLrpsTW2WSI8Oxp9njkAAIA/AACAPxo/XT3DUW66f+gsuze4Pra4o3C6JPRJOgAAgD8AAIA/tutSvr0Cajy+n8E6vWj6uJYh/b2bju25AACAPwAAgD+aswa92GLTPgtESjwiOu290aaRvA0mkjwAAAAAAAAAAK0dCj/n2B6+AH4EvR0jPLxs2c2+lV8OPQAAAAAAAAAAM61fPIXj8blKqqa5PLhLtLkBF7ku4sE4AACAPwAAgD+Ao9899nx0ulIQyzpNLMc0FPvbumjl57kAAIA/AACAP7qzVL7V0AM/mAPJPc2wnr7vq9a7GldzPQAAAAAAAAAAALsQvS8ouD8gMBG/QFkPPqzCNTyzC2+9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAABAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPN7kt+j7aUCUhpRSlIwBbJRNDAKMAXSUR0CDtUq814xDdX2UKGgGaAloD0MI1jbF46KCXECUhpRSlGgVTegDaBZHQIO56uMdcSp1fZQoaAZoCWgPQwiaB7DIL1dmQJSGlFKUaBVN6ANoFkdAg8xxdyDIzXV9lChoBmgJaA9DCP8+48KBK1xAlIaUUpRoFU3oA2gWR0CD0HFa0QbudX2UKGgGaAloD0MITrUWZiHqZECUhpRSlGgVTegDaBZHQIPc7gn+hoN1fZQoaAZoCWgPQwh3oE55dFFIQJSGlFKUaBVN6ANoFkdAg+8IvalDW3V9lChoBmgJaA9DCEdWfhmM/19AlIaUUpRoFU3oA2gWR0CD9AoJiRW+dX2UKGgGaAloD0MIa54j8l1YYUCUhpRSlGgVTegDaBZHQIP34Cjk+5h1fZQoaAZoCWgPQwjZJaq3BhBfQJSGlFKUaBVN6ANoFkdAg/j1jy4FzXV9lChoBmgJaA9DCLth26JMgGJAlIaUUpRoFU3oA2gWR0CD++lj3EhrdX2UKGgGaAloD0MIOQt72uEjX0CUhpRSlGgVTegDaBZHQIP9Mi+tbLV1fZQoaAZoCWgPQwg18Q7wpCRcQJSGlFKUaBVN6ANoFkdAhBjeuvECNnV9lChoBmgJaA9DCAirsYS1Ll5AlIaUUpRoFU3oA2gWR0CEMYdQO4G2dX2UKGgGaAloD0MIoMGmzqOeWkCUhpRSlGgVTegDaBZHQIQyozP8hs91fZQoaAZoCWgPQwg6lQwAVfZYQJSGlFKUaBVN6ANoFkdAhDNeHi3ocXV9lChoBmgJaA9DCOWdQxmqcFxAlIaUUpRoFU3oA2gWR0CEPaBK+SKWdX2UKGgGaAloD0MIaauSyD6oXkCUhpRSlGgVTegDaBZHQIRFPoxHoX91fZQoaAZoCWgPQwgtJGB0+TRgQJSGlFKUaBVN6ANoFkdAhEn5vUBnz3V9lChoBmgJaA9DCKFpiZXRd1NAlIaUUpRoFU3oA2gWR0CEWkO5J9RadX2UKGgGaAloD0MIPKOtSqJBYkCUhpRSlGgVTegDaBZHQIRcvZbpu/F1fZQoaAZoCWgPQwiaBdodUuNYQJSGlFKUaBVN6ANoFkdAhGddKujh1nV9lChoBmgJaA9DCCO8PQgB1VRAlIaUUpRoFU3oA2gWR0CEeJIWgvlEdX2UKGgGaAloD0MIjZlEveCdYUCUhpRSlGgVTegDaBZHQIR9fqxC6Yp1fZQoaAZoCWgPQwhjYB3HD2doQJSGlFKUaBVN5QNoFkdAhIDB+4LCvXV9lChoBmgJaA9DCCgn2lVIuVxAlIaUUpRoFU3oA2gWR0CEghHAh0QsdX2UKGgGaAloD0MIcvp6vuZDYECUhpRSlGgVTegDaBZHQISEsxVQyh11fZQoaAZoCWgPQwjs+gW74aBkQJSGlFKUaBVN6ANoFkdAhIXbNbC79XV9lChoBmgJaA9DCLyt9Npsf2BAlIaUUpRoFU3oA2gWR0CEnxm2b5M2dX2UKGgGaAloD0MIxEKtad7hF8CUhpRSlGgVTR8BaBZHQIShHZXdTHd1fZQoaAZoCWgPQwj5EFSNXlZiQJSGlFKUaBVN6ANoFkdAhWXco6S1V3V9lChoBmgJaA9DCG9lic4yR19AlIaUUpRoFU3oA2gWR0CFZsYUFjd6dX2UKGgGaAloD0MIQuvhy0R1XkCUhpRSlGgVTegDaBZHQIVnWAoXsPd1fZQoaAZoCWgPQwgb1lQWhYRcQJSGlFKUaBVN6ANoFkdAhW+57w8W9HV9lChoBmgJaA9DCBBbejRVvWdAlIaUUpRoFU0mA2gWR0CFdRlum78OdX2UKGgGaAloD0MIERyXcVMJYECUhpRSlGgVTegDaBZHQIV2KgyuZCx1fZQoaAZoCWgPQwhXPsvzYPJgQJSGlFKUaBVN6ANoFkdAhXoE5hjOLXV9lChoBmgJaA9DCA0Zj1KJwGtAlIaUUpRoFU2NAWgWR0CFf3xR2r4ndX2UKGgGaAloD0MIdlJflvb0YUCUhpRSlGgVTegDaBZHQIWGduP3i711fZQoaAZoCWgPQwjm6VxRSplmQJSGlFKUaBVN6ANoFkdAhZFQ7LdN4HV9lChoBmgJaA9DCHLEWnyKgmFAlIaUUpRoFU3oA2gWR0CFoTbiZOSGdX2UKGgGaAloD0MIFVW/0nmzYECUhpRSlGgVTegDaBZHQIWpDHyVfNR1fZQoaAZoCWgPQwhS19r71NFgQJSGlFKUaBVN6ANoFkdAhap6OYIBzXV9lChoBmgJaA9DCL7bvHFSTWNAlIaUUpRoFU3oA2gWR0CFrVtb9qDcdX2UKGgGaAloD0MIizbHuc3CYECUhpRSlGgVTegDaBZHQIWuoj2SMcZ1fZQoaAZoCWgPQwhKs3kcBm9gQJSGlFKUaBVN6ANoFkdAhcz71RLsbHV9lChoBmgJaA9DCDasqSwKXztAlIaUUpRoFU1NAWgWR0CF3f/MGHHndX2UKGgGaAloD0MItyQH7GpdV0CUhpRSlGgVTegDaBZHQIXiu4I8hcJ1fZQoaAZoCWgPQwjwbI/e8HRhQJSGlFKUaBVN6ANoFkdAhePdTo+wDHV9lChoBmgJaA9DCG1YU1kUj2RAlIaUUpRoFU3oA2gWR0CF5JCSidrgdX2UKGgGaAloD0MIQSlauReLXUCUhpRSlGgVTegDaBZHQIXuzMvAXVN1fZQoaAZoCWgPQwie0VYlkYBiQJSGlFKUaBVN6ANoFkdAhfUjHwPRRnV9lChoBmgJaA9DCCHp0yp66WBAlIaUUpRoFU3oA2gWR0CF9k5e7cwhdX2UKGgGaAloD0MIB3x+GCGbWUCUhpRSlGgVTegDaBZHQIX6qBTXJ5p1fZQoaAZoCWgPQwghzO1ebgpgQJSGlFKUaBVN6ANoFkdAhgEOuq3mWHV9lChoBmgJaA9DCBSvsrYpv2BAlIaUUpRoFU3oA2gWR0CGCX/MGHHndX2UKGgGaAloD0MIVYodjUPgYECUhpRSlGgVTegDaBZHQIYWup++dsl1fZQoaAZoCWgPQwjaPA6D+VJjQJSGlFKUaBVN6ANoFkdAhigHbAUL2HV9lChoBmgJaA9DCGQFvw0x+VhAlIaUUpRoFU3oA2gWR0CGMCrAgxJvdX2UKGgGaAloD0MIxY7GoX4ZYECUhpRSlGgVTegDaBZHQIYxnT3IuGt1fZQoaAZoCWgPQwge/pqs0VtiQJSGlFKUaBVN6ANoFkdAhjSZTQ3PzHV9lChoBmgJaA9DCF6gpMACvl1AlIaUUpRoFU3oA2gWR0CGU4v8qFyrdX2UKGgGaAloD0MIylLr/ca7ZkCUhpRSlGgVTcwBaBZHQIZVsPFvQ4V1fZQoaAZoCWgPQwj2su20NcdnQJSGlFKUaBVNiAJoFkdAhmH+FlCkXXV9lChoBmgJaA9DCD1Geeblo2RAlIaUUpRoFU3oA2gWR0CHFnBw++uedX2UKGgGaAloD0MICK2HLxPXX0CUhpRSlGgVTegDaBZHQIcaSliz9jx1fZQoaAZoCWgPQwhhw9MrZbZfQJSGlFKUaBVN6ANoFkdAhxs6ij+Jg3V9lChoBmgJaA9DCN1c/G3PcGJAlIaUUpRoFU3oA2gWR0CHG89XcQAddX2UKGgGaAloD0MILA38qIaoXkCUhpRSlGgVTegDaBZHQIckC0QbuMN1fZQoaAZoCWgPQwhDOGbZE0thQJSGlFKUaBVN6ANoFkdAhynSm65G0HV9lChoBmgJaA9DCKp9Oh4z+ltAlIaUUpRoFU3oA2gWR0CHKvhb4agmdX2UKGgGaAloD0MIQNmUK7yfRUCUhpRSlGgVTegDaBZHQIcvIsAeaKF1fZQoaAZoCWgPQwhsPq4NldhgQJSGlFKUaBVN6ANoFkdAhzWLk8zQ/3V9lChoBmgJaA9DCHWSrS6nRCHAlIaUUpRoFU0wAWgWR0CHOAH9m6GydX2UKGgGaAloD0MIxCRcyCMIXECUhpRSlGgVTegDaBZHQIddT6xgRbt1fZQoaAZoCWgPQwhFgxQ8hcpdQJSGlFKUaBVN6ANoFkdAh2XtYjjaPHV9lChoBmgJaA9DCMk5sYd2HmtAlIaUUpRoFU15AmgWR0CHZxmdy1eCdX2UKGgGaAloD0MIjBL0F3pSYECUhpRSlGgVTegDaBZHQIdnYpON5t51fZQoaAZoCWgPQwi8lpAP+hhhQJSGlFKUaBVN6ANoFkdAh2orhJiAlXV9lChoBmgJaA9DCP9cNGS8MWNAlIaUUpRoFU3oA2gWR0CHh7gjyFwldX2UKGgGaAloD0MIliTP9f0rZUCUhpRSlGgVTegDaBZHQIeJwQrc0tR1fZQoaAZoCWgPQwgPgLirV6U4QJSGlFKUaBVNEwFoFkdAh4qXWFvhqHV9lChoBmgJaA9DCBAHCVG+LGNAlIaUUpRoFU3oA2gWR0CHmbWiDdxidX2UKGgGaAloD0MIMIDwocS6YUCUhpRSlGgVTegDaBZHQIeanXPJJXh1fZQoaAZoCWgPQwipvvOLErJfQJSGlFKUaBVN6ANoFkdAh5tBiTdLx3V9lChoBmgJaA9DCLSPFfw2LG9AlIaUUpRoFU29AWgWR0CHojk5IYm+dX2UKGgGaAloD0MIYVJ8fEJrXECUhpRSlGgVTegDaBZHQIejs/0NBnl1fZQoaAZoCWgPQwiJtI0/UR1cQJSGlFKUaBVN6ANoFkdAh6j1/+bVjXV9lChoBmgJaA9DCHB5rBkZT2FAlIaUUpRoFU3oA2gWR0CHqgLk0aZQdX2UKGgGaAloD0MIgUBn0qbMXkCUhpRSlGgVTegDaBZHQIet0Bnzxw11fZQoaAZoCWgPQwgIqkavhpRiQJSGlFKUaBVN6ANoFkdAh7O+ws5GSnV9lChoBmgJaA9DCE8EcR5O9VpAlIaUUpRoFU3oA2gWR0CHthtGd7OWdX2UKGgGaAloD0MIk4ychT0HW0CUhpRSlGgVTegDaBZHQIfXSrmyPdV1fZQoaAZoCWgPQwhw0jQomhRWQJSGlFKUaBVN6ANoFkdAh97iYkVvdnV9lChoBmgJaA9DCJHz/j9OMV5AlIaUUpRoFU3oA2gWR0CH3/I91U2ldX2UKGgGaAloD0MI5EnSNZOJYUCUhpRSlGgVTegDaBZHQIgCRDNQj2V1fZQoaAZoCWgPQwhDU3b6QbtXQJSGlFKUaBVN6ANoFkdAiARqk/KQrHV9lChoBmgJaA9DCEn0Morl11VAlIaUUpRoFU3oA2gWR0CIBTcqOLiudX2UKGgGaAloD0MIOpFgqhkvaECUhpRSlGgVTegDaBZHQIgT2sJY1YR1fZQoaAZoCWgPQwj4wfnUsTVgQJSGlFKUaBVN6ANoFkdAiBTAMtsen3V9lChoBmgJaA9DCKzJU1bTHmJAlIaUUpRoFU3oA2gWR0CIFVtBOYY0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6bb4f05168cb467430bb96e597e4be48896a398d4524eb17327e0ff9bda5abc
3
+ size 223856
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 190.79531267709788, "std_reward": 94.9191876709324, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-14T23:30:52.128383"}
 
1
+ {"mean_reward": 184.35856575782398, "std_reward": 74.25567824700687, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-15T00:17:05.181602"}