File size: 5,005 Bytes
60b97d4
b8e3c96
 
 
26b35fb
b8e3c96
60b97d4
b8e3c96
60b97d4
b8e3c96
26b35fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e3c96
 
 
 
 
 
 
 
 
 
 
 
83d048a
60b97d4
 
 
b8e3c96
60b97d4
b8e3c96
 
 
 
 
 
 
 
 
 
 
 
60b97d4
 
b8e3c96
60b97d4
b8e3c96
 
60b97d4
b8e3c96
60b97d4
b8e3c96
 
 
 
 
 
60b97d4
b8e3c96
 
 
 
 
 
 
 
 
60b97d4
b8e3c96
 
 
 
60b97d4
b8e3c96
60b97d4
b8e3c96
 
 
 
 
 
 
 
 
26b35fb
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
language:
- th
- en
license: apache-2.0
library_name: transformers
base_model:
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-7B
pipeline_tag: text-generation
model-index:
- name: Tsunami-0.5x-7B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 70.99
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 37.36
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 4.83
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 8.61
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 18.57
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 38.42
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
      name: Open LLM Leaderboard
---

<img src="./Tsunami.webp" alt="Tsunami Model" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# Tsunami-0.5x-7B-Instruct
**TSUNAMI**: Transformative Semantic Understanding and Natural Augmentation Model for Intelligence.

**TSUNAMI** full name was created by ChatGPT.

---

### infomation
**Tsunami-0.5x-7B-Instruct** is Thai Large Language Model that fine-tuned from **Qwen2.5-7B** around **100,000** rows in Thai dataset.

---

### Prompt Template

This model uses `ChatML` prompt template:

```
<|im_start|>system
{System}<|im_end|>
<|im_start|>user
{User}<|im_end|>
<|im_start|>assistant
{Assistant}
````

### How to use


```python

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "Tsunami-th/Tsunami-0.5x-7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "สวัสดีครับ"}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

inputs = tokenizer(text, return_tensors="pt")
inputs = inputs.to(model.device)
with torch.no_grad():
   output = model.generate(**inputs, max_new_tokens=512)

response = tokenizer.decode(output[0, len(inputs['input_ids'][0]):], skip_special_tokens=True)
```

---

### Author
 - Pollakrit Lorprasertkul | [email protected]

---

 - **Tsunami-0.5x-7B-Instruct** is the version 0.5x that did not train on the whole dataset.
 - **Tsunami-1.0-7B-Instruct** is coming soon.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Tsunami-th__Tsunami-0.5x-7B-Instruct)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |29.80|
|IFEval (0-Shot)    |70.99|
|BBH (3-Shot)       |37.36|
|MATH Lvl 5 (4-Shot)| 4.83|
|GPQA (0-shot)      | 8.61|
|MuSR (0-shot)      |18.57|
|MMLU-PRO (5-shot)  |38.42|