gamepollakrit commited on
Commit
1b928ee
1 Parent(s): 4b21efe

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - th
4
+ - en
5
+ license: apache-2.0
6
+ library_name: transformers
7
+ base_model:
8
+ - Qwen/Qwen2.5-7B-Instruct
9
+ - Qwen/Qwen2.5-7B
10
+ pipeline_tag: text-generation
11
+ ---
12
+ <img src="./Tsunami.webp" alt="Tsunami Model" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
13
+
14
+ # Tsunami-1.0-7B-Instruct
15
+ **TSUNAMI**: Transformative Semantic Understanding and Natural Augmentation Model for Intelligence.
16
+
17
+ **TSUNAMI** full name was created by ChatGPT.
18
+
19
+ ---
20
+
21
+ ### infomation
22
+ **Tsunami-1.0-7B-Instruct** is Thai Large Language Model that fine-tuned from **Qwen2.5-7B** in Thai dataset.
23
+
24
+ ---
25
+
26
+ ### Author
27
+ - Pollakrit Lorprasertkul | [email protected]
28
+
29
+ ---
30
+
31
+ ### Prompt Template
32
+
33
+ This model uses `ChatML` prompt template:
34
+
35
+ ```
36
+ <|im_start|>system
37
+ {System}<|im_end|>
38
+ <|im_start|>user
39
+ {User}<|im_end|>
40
+ <|im_start|>assistant
41
+ {Assistant}
42
+ ````
43
+
44
+ ---
45
+
46
+ ### How to use
47
+
48
+
49
+ ```python
50
+ from transformers import AutoModelForCausalLM, AutoTokenizer
51
+ import torch
52
+ model_name = "Tsunami-th/Tsunami-1.0-7B-Instruct"
53
+ model = AutoModelForCausalLM.from_pretrained(
54
+ model_name,
55
+ torch_dtype="auto",
56
+ device_map="auto"
57
+ )
58
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
59
+ messages = [
60
+ {"role": "system", "content": "You are a helpful assistant."},
61
+ {"role": "user", "content": "สวัสดีครับ"}
62
+ ]
63
+ text = tokenizer.apply_chat_template(
64
+ messages,
65
+ tokenize=False,
66
+ add_generation_prompt=True
67
+ )
68
+ inputs = tokenizer(text, return_tensors="pt")
69
+ inputs = inputs.to(model.device)
70
+ with torch.no_grad():
71
+ output = model.generate(**inputs, max_new_tokens=512)
72
+ response = tokenizer.decode(output[0, len(inputs['input_ids'][0]):], skip_special_tokens=True)
73
+ ```
74
+
75
+ ---