Ttimofeyka commited on
Commit
9070866
·
verified ·
1 Parent(s): 054870b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +197 -125
README.md CHANGED
@@ -1,132 +1,204 @@
1
  ---
2
- license: mit
3
  library_name: peft
4
- tags: []
5
- base_model: Josephgflowers/TinyLlama-Cinder-1.3B-Test.2
6
- model-index:
7
- - name: TinyLLaMA-1.3B-Alpaca
8
- results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
- <details><summary>See axolotl config</summary>
16
-
17
- axolotl version: `0.4.0`
18
- ```yaml
19
- base_model: Josephgflowers/TinyLlama-Cinder-1.3B-Test.2
20
- model_type: LlamaForCausalLM
21
- tokenizer_type: LlamaTokenizer
22
-
23
- load_in_8bit: true
24
- load_in_4bit: false
25
- strict: false
26
-
27
- datasets:
28
- - path: mahiatlinux/merged_alpaca-1k
29
- type: alpaca
30
- dataset_prepared_path:
31
- val_set_size: 0.05
32
- output_dir: ./lora-out
33
-
34
- sequence_len: 2048
35
- sample_packing: false
36
- pad_to_sequence_len: true
37
-
38
- adapter: lora
39
- lora_model_dir:
40
- lora_r: 16
41
- lora_alpha: 8
42
- lora_dropout: 0.05
43
- lora_target_linear: true
44
- lora_fan_in_fan_out:
45
-
46
- wandb_project:
47
- wandb_entity:
48
- wandb_watch:
49
- wandb_name:
50
- wandb_log_model:
51
-
52
- gradient_accumulation_steps: 4
53
- micro_batch_size: 2
54
- num_epochs: 2
55
- optimizer: adamw_bnb_8bit
56
- lr_scheduler: cosine
57
- learning_rate: 0.0002
58
-
59
- train_on_inputs: false
60
- group_by_length: false
61
- bf16: auto
62
- fp16:
63
- tf32: false
64
-
65
- gradient_checkpointing: true
66
- early_stopping_patience:
67
- resume_from_checkpoint:
68
- local_rank:
69
- logging_steps: 1
70
- xformers_attention:
71
- flash_attention: true
72
-
73
- warmup_steps: 10
74
- evals_per_epoch: 4
75
- saves_per_epoch: 1
76
- debug:
77
- deepspeed:
78
- weight_decay: 0.0
79
- fsdp:
80
- fsdp_config:
81
- special_tokens:
82
-
83
- ```
84
-
85
- </details><br>
86
-
87
- # TinyLLaMA-1.3B-Alpaca
88
-
89
- This model is a fine-tuned version of [Josephgflowers/TinyLlama-Cinder-1.3B-Test.2](https://huggingface.co/Josephgflowers/TinyLlama-Cinder-1.3B-Test.2) on the Alpaca dataset.
90
- It achieves the following results on the evaluation set:
91
- - Loss: 1.4912
92
-
93
- ## Model description
94
-
95
- More information needed
96
-
97
- ## Intended uses & limitations
98
-
99
- More information needed
100
-
101
- ## Training and evaluation data
102
-
103
- More information needed
104
-
105
- ## Training procedure
106
-
107
- ### Training hyperparameters
108
-
109
- The following hyperparameters were used during training:
110
- - learning_rate: 0.0002
111
- - train_batch_size: 2
112
- - eval_batch_size: 2
113
- - seed: 42
114
- - gradient_accumulation_steps: 4
115
- - total_train_batch_size: 8
116
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
117
- - lr_scheduler_type: cosine
118
- - lr_scheduler_warmup_steps: 10
119
- - num_epochs: 2
120
-
121
- ### Training results
122
-
123
- ARC_e: 57.53
124
- Hellaswag: 0.5629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
  ### Framework versions
127
 
128
- - PEFT 0.9.1.dev0
129
- - Transformers 4.39.0.dev0
130
- - Pytorch 2.1.2+cu121
131
- - Datasets 2.17.0
132
- - Tokenizers 0.15.0
 
1
  ---
 
2
  library_name: peft
3
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.4
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
 
202
  ### Framework versions
203
 
204
+ - PEFT 0.9.1.dev0