COCOM_disabled_flash_attn / modeling_cocom.py
Plasmarine's picture
Longformer attn config
929ceeb verified
raw
history blame
16.9 kB
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PreTrainedModel, PretrainedConfig, AutoModel,LongformerForCausalLM, LongformerTokenizer, LongformerConfig
import torch
import math
from peft import get_peft_model, LoraConfig, TaskType
import os
def freeze_model(model):
for param in model.parameters():
param.requires_grad = False
class BERT_Compressor(torch.nn.Module):
def __init__(self, compr_model_name, compr_rate, compr_linear_type, decoder_hidden_size):
super().__init__()
# init model
self.model_name = compr_model_name # base model name of BERT; example: bert-base-ucased
self.model = AutoModel.from_pretrained(compr_model_name, torch_dtype=torch.float16)
self.tokenizer = AutoTokenizer.from_pretrained(compr_model_name, use_fast=True)
self.compr_rate = compr_rate # compression rate
self.compressing_mode = compr_linear_type # linear layer type, could be either concat or mean.
if self.compressing_mode == 'concat': # default setting in paper
self.linear = torch.nn.Linear(self.model.config.hidden_size*self.compr_rate, decoder_hidden_size)
elif self.compressing_mode == 'mean':
self.linear = torch.nn.Linear(self.model.config.hidden_size, decoder_hidden_size)
self.linear = self.linear.float16()
def forward(self, input_ids, attention_mask):
# compressing context using BERT
segment_compress_outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True)
num_embs = math.ceil(input_ids.size(1) / self.compr_rate)
all_hidden_states_emb = list()
if self.compressing_mode == 'concat':
for segment_idx in range(num_embs):
start_idx = segment_idx * self.compr_rate
end_idx = (segment_idx + 1) * self.compr_rate
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
hidden_state_concat = torch.flatten(hidden_state, start_dim=1) #batch_size, hidden_state_dim * compression_rate
all_hidden_states_emb.append(hidden_state_concat)
elif self.compressing_mode == "mean":
for segment_idx in range(num_embs):
start_idx = segment_idx * self.compr_rate
end_idx = (segment_idx + 1) * self.compr_rate
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
# Apply mean pooling to get the final embedding for the segment
all_hidden_states_emb.append(hidden_state)
else:
raise NotImplementedError()
all_hidden_states_emb_cat = torch.stack(all_hidden_states_emb, dim=1)
transformed_embeds = self.linear(all_hidden_states_emb_cat)
if self.compressing_mode == "mean":
transformed_embeds = torch.mean(transformed_embeds, dim=2)
# dimention of transformed_embeds: (batch_size*generation_top_k, num_embs, decoder_hidden_size)
return transformed_embeds
class COCOMConfig(PretrainedConfig):
model_type = "COCOM"
def __init__(self,
decoder_model_name="meta-llama/Llama-2-7b-chat-hf",
quantization = 'no',
generation_top_k = 1,
sep = False,
compr_model_name = "bert-base-uncased",
compr_rate = 64,
compr_linear_type = 'concat',
lora = False,
training_form="both",
lora_r=16,
attn_implementation="longformer",
attention_window=512,
device_map = "cuda",
**kwargs):
super().__init__(**kwargs)
self.decoder_model_name = decoder_model_name # model name of decoder
self.quantization = quantization # quantization, could be no, int4, int8
self.generation_top_k = generation_top_k # top k for each query, for pretraining, set to 1
self.sep = sep # boolean type, whether to use sep token
self.compr_model_name = compr_model_name # model name of compressor
self.compr_rate = compr_rate # compression rate
self.compr_linear_type = compr_linear_type # linear layer type, could be either concat or mean
self.lora = lora # boolean type, whether to use lora trsining
self.training_form = training_form # training form, could be compressor: training only comprssor; both:
self.lora_r = lora_r # lora_r for lora training, we use 16 throughout the experiment.
self.attn_implementation = attn_implementation
self.device_map = device_map
class COCOM(PreTrainedModel):
config_class = COCOMConfig
def __init__(self, cfg):
super().__init__(cfg)
# define models
attn_impl = cfg.attn_implementation
if cfg.attn_implementation == "longformer":
# Initialize Longformer
longformer_config = LongformerConfig.from_pretrained(cfg.decoder_model_name)
longformer_config.attention_window = 512 # Modify based on context window size
self.decoder = LongformerForCausalLM.from_pretrained(
cfg.decoder_model_name,
config=longformer_config,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map=cfg.device_map
)
else:
# Original decoder initialization
self.decoder = AutoModelForCausalLM.from_pretrained(
cfg.decoder_model_name,
torch_dtype=torch.float16,
attn_implementation=attn_impl,
low_cpu_mem_usage=True,
device_map=cfg.device_map
)
# model could be loaded in three quantization modes: no, int4, int8
if cfg.quantization == "no":
self.decoder = AutoModelForCausalLM.from_pretrained(
cfg.decoder_model_name,
torch_dtype=torch.float16,
attn_implementation=attn_impl,
low_cpu_mem_usage = True,
device_map =cfg.device_map
)
elif cfg.quantization == "int4":
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_compute_dtype='float16',
low_cpu_mem_usage = True,
)
self.decoder = AutoModelForCausalLM.from_pretrained(
cfg.decoder_model_name,
quantization_config=quant_config,
attn_implementation=attn_impl,
torch_dtype=torch.float16,
resume_download=True,
low_cpu_mem_usage = True,
trust_remote_code=True,
device_map =cfg.device_map
)
elif cfg.quantization == "int8":
quant_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True,
bnb_4bit_compute_dtype='float16',
low_cpu_mem_usage = True,
)
self.decoder = AutoModelForCausalLM.from_pretrained(
cfg.decoder_model_name,
quantization_config=quant_config,
attn_implementation=attn_impl,
torch_dtype=torch.float16,
resume_download=True,
low_cpu_mem_usage = True,
trust_remote_code=True,
device_map =cfg.device_map
)
else:
raise NotImplementedError()
# when compr_model_name is not set, then means using a decoder-based compressor, otherwise a bert based compressor
if cfg.compr_model_name is not None:
# case bert based compressor
self.compr = BERT_Compressor(cfg.compr_model_name, cfg.compr_rate, cfg.compr_linear_type, self.decoder.config.hidden_size)
else:
# case decoder based compressor
self.compr = None
# set lora adaptors
if cfg.lora:
peft_config = LoraConfig(
task_type="CAUSAL_LM",
r=cfg.lora_r,
lora_alpha=2* cfg.lora_r,
target_modules='all-linear',
lora_dropout=0.1,
)
self.decoder = get_peft_model(self.decoder, peft_config)
self.decoder.print_trainable_parameters()
# for training_form=compressor, then freeze the decoder for BERT-based
self.training_form = cfg.training_form
if self.training_form == "compressor" and self.compr is not None:
freeze_model(self.decoder)
self.decoder_tokenizer = AutoTokenizer.from_pretrained(cfg.decoder_model_name, use_fast=True, padding_side='left')
# define special tokens
self.decoder_tokenizer.add_special_tokens({'additional_special_tokens': ['<MEM>', '<AE>', '<ENC>', '<SEP>']})
self.decoder_tokenizer.mem_token = '<MEM>' # Memory token
self.decoder_tokenizer.ae_token = '<AE>' # token for autoencoding on decoder side
self.decoder_tokenizer.enc_token = '<ENC>' # token for autoencoding on compressor side
self.decoder_tokenizer.sep_token = '<SEP>' # sep token between document
self.decoder_tokenizer.mem_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<MEM>')
self.decoder_tokenizer.ae_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<AE>')
self.decoder_tokenizer.sep_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<SEP>')
# if pad token ecist then use pad token, othrwise bos token
if self.decoder_tokenizer.pad_token_id is None:
self.decoder_tokenizer.pad_token_id = self.decoder_tokenizer.bos_token_id
# resize the tokenizer embedding
self.decoder.resize_token_embeddings(len(self.decoder_tokenizer))
self.decoder.generation_config.top_p=None
self.decoder.generation_config.temperature=None
self.compr_model_name = cfg.compr_model_name
# other settings
self.generation_top_k = cfg.generation_top_k
self.sep = cfg.sep
self.compr_rate = cfg.compr_rate
self.local_rank = os.getenv('LOCAL_RANK', '0')
def compress_and_replace_emb(self, enc_input_ids, enc_attention_mask, dec_input_ids, dec_attention_mask):
indices = range(0, enc_input_ids.size(0) + 1, self.generation_top_k)
# Perform compression
if self.compr:
compressed_embs = self.compr(enc_input_ids, enc_attention_mask)
else:
compressed_embs = self.compr_decoder(enc_input_ids, enc_attention_mask)
# Replace embeddings with compressed ones
input_embeds = self.replace_embeddings(compressed_embs, dec_input_ids, dec_attention_mask, indices)
return input_embeds
def compr_decoder(self, input_ids, attention_mask):
emb = self.decoder(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True).hidden_states[-1]
mask = input_ids == self.decoder_tokenizer.mem_token_id
return emb[mask].reshape(emb.size(0), -1, emb.size(-1))
def replace_embeddings(self, compressed_embs, dec_input_ids, indices):
# Embed the decoder input
inputs_embeds = self.decoder.get_input_embeddings()(dec_input_ids)
# Number of compressed embeddings
num_embs = compressed_embs.size(1)
# Define slot length for memory tokens
slot_len = num_embs + 1 if self.sep else num_embs
# Find the first memory token indices
first_mem_token_indices = torch.argmax((dec_input_ids == self.decoder_tokenizer.mem_token_id).int(), dim=1)
batch_size = inputs_embeds.size(0)
# Replace memory tokens with compressed embeddings
for i in range(batch_size):
for j in range(indices[i], indices[i + 1]):
start_idx = first_mem_token_indices[i].item() + (j - indices[i]) * slot_len
inputs_embeds[i, start_idx:start_idx + num_embs, :] = compressed_embs[j]
return inputs_embeds
def forward(self,
enc_input_ids: torch.LongTensor = None,
enc_attention_mask: torch.LongTensor = None,
dec_input_ids: torch.LongTensor = None,
dec_attention_mask: torch.LongTensor = None,
labels: torch.LongTensor = None):
inputs_embeds = self.compress_and_replace_emb(enc_input_ids, enc_attention_mask, dec_input_ids, dec_attention_mask)
# Detach inputs_embeds if training compressor only
if (self.training_form == "compressor") and (self.compr is None):
inputs_embeds = inputs_embeds.detach()
# Pass through the decoder
decoder_outputs = self.decoder(inputs_embeds=inputs_embeds, attention_mask=dec_attention_mask, labels=labels)
return {"loss": decoder_outputs.loss, "logits": decoder_outputs.logits}
def generate(self, model_input, max_new_tokens=128):
device = self.decoder.device
enc_input_ids, enc_attention_mask, dec_input_ids, dec_attention_mask = model_input['enc_input_ids'], model_input['enc_attention_mask'], model_input['dec_input_ids'], model_input['dec_attention_mask']
inputs_embeds = self.compress_and_replace_emb(enc_input_ids.to(device), enc_attention_mask.to(device), dec_input_ids.to(device))
output_ids = self.decoder.generate(
inputs_embeds=inputs_embeds.to(device),
attention_mask=dec_attention_mask.to(device),
do_sample=False,
top_p=None,
max_new_tokens=min(max_new_tokens, 4096)
)
decoded = self.decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True)
return decoded
def generate_from_text(self, contexts, questions, max_new_tokens=128):
# for each question in list give input a list of contexts of equal length
# first make sure that every list in contexts are having the same length
assert len(contexts) == len(questions)
assert all([len(context) == len(contexts[0]) for context in contexts])
# prepare inp_enc for compression
# first flatten the contexts
self.generation_top_k = len(contexts[0])
flat_contexts = sum(contexts, [])
#tokenize the contexts, depending if compr exist or not
if self.compr is not None:
enc_input = self.compr.tokenizer(flat_contexts, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=self.compr_rate)
num_mem_tokens = math.ceil(enc_input['input_ids'].size(1) / self.compr_rate)
else:
# first need to add special token in flat_contexts
flat_contexts = [self.decoder_tokenizer.enc_token + self.decoder_tokenizer.bos_token + context + self.decoder_tokenizer.bos_token for context in flat_contexts]
enc_input = self.decoder_tokenizer(flat_contexts, truncation=True, return_tensors='pt', padding="longest")
num_mem_tokens = math.ceil((enc_input['input_ids'].size(1)-3) / self.compr_rate)
mem_tokens = torch.full((enc_input['input_ids'].size(0), num_mem_tokens), self.decoder_tokenizer.mem_token_id, dtype=torch.long)
enc_input['input_ids'] = torch.cat([mem_tokens, enc_input['input_ids']], dim=1)
enc_input['attention_mask'] = torch.cat([torch.ones_like(mem_tokens), enc_input['attention_mask']], dim=1)
# prepare inp_dec
mem_tokens = self.decoder_tokenizer.mem_token * num_mem_tokens
if self.sep:
mem_tokens += self.decoder_tokenizer.sep_token
instr = [self.decoder_tokenizer.bos_token + mem_tokens* self.generation_top_k + '[INST]' + question + '\n[/INST]\n' for question in questions]
inp_dec = self.decoder_tokenizer(instr, truncation=True, return_tensors='pt', padding="longest")
# generate
model_input = {
'enc_input_ids': enc_input['input_ids'].to(self.decoder.device),
'enc_attention_mask': enc_input['attention_mask'].to(self.decoder.device),
'dec_input_ids': inp_dec['input_ids'].to(self.decoder.device),
'dec_attention_mask': inp_dec['attention_mask'].to(self.decoder.device)
}
return self.generate(model_input, max_new_tokens)