--- base_model: YituTech/conv-bert-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: conv-bert-base results: [] --- # conv-bert-base This model is a fine-tuned version of [YituTech/conv-bert-base](https://huggingface.co/YituTech/conv-bert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2024 - Precision: 0.7686 - Recall: 0.8278 - F1: 0.7971 - Accuracy: 0.9376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2235 | 1.0 | 2078 | 0.2225 | 0.7307 | 0.7996 | 0.7636 | 0.9301 | | 0.1814 | 2.0 | 4156 | 0.1946 | 0.7539 | 0.8257 | 0.7881 | 0.9363 | | 0.1469 | 3.0 | 6234 | 0.2024 | 0.7686 | 0.8278 | 0.7971 | 0.9376 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1