ayoubkirouane commited on
Commit
842231b
·
1 Parent(s): bf44ef5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - ar
5
+ - en
6
+ library_name: transformers
7
+ pipeline_tag: object-detection
8
+ tags:
9
+ - climate
10
+ ---
11
+
12
+
13
+
14
+ # DETR-BASE_Marine
15
+
16
+ ## Overview
17
+
18
+ + Model Name: DETR-BASE_Marine
19
+ + Model Architecture: DETR (End-to-End Object Detection) with ResNet-50 backbone.
20
+ + Model Type: Object Detection
21
+ + Framework: PyTorch
22
+ + Dataset: Aerial Maritime Image Dataset
23
+ + License: MIT License (for the dataset)
24
+
25
+
26
+ ## Model Description
27
+ The DETR-BASE_Marine Aerial Maritime Detector is a deep learning model based on the DETR architecture with a ResNet-50 backbone. It has been fine-tuned on the "Aerial Maritime Image Dataset," which comprises 74 aerial photographs captured via a Mavic Air 2 drone. The model is designed for object detection tasks in maritime environments and can identify and locate various objects such as docks, boats, lifts, jetskis, and cars in aerial images.
28
+
29
+ ## Key Features:
30
+ + Multi-class object detection.
31
+ + Object classes: Docks, Boats, Lifts, Jetskis, Cars.
32
+ + Robust performance in aerial and maritime scenarios.
33
+
34
+ ## Use Cases
35
+ + **Boat Counting**: Count the number of boats on water bodies, such as lakes, using drone imagery.
36
+ + **Boat Lift Detection**: Identify the presence of boat lifts on the waterfront via aerial surveillance.
37
+ + **Car Detection**: Detect and locate cars within maritime regions using UAV drones.
38
+ + **Habitability Assessment**: Determine the level of inhabitation around lakes and water bodies based on detected objects.
39
+ + **Property Monitoring**: Identify if visitors or activities are present at lake houses or properties using drone surveillance.
40
+ + **Proof of Concept**: Showcase the potential of UAV imagery for maritime projects and object detection tasks.
41
+
42
+ ## Dataset
43
+ + **Dataset Name**: Aerial Maritime Image Dataset
44
+ + **Number of Images**: 74
45
+ + **Number of Bounding Boxes**: 1,151
46
+ + **Collection Method**: Captured via Mavic Air 2 drone at 400 ft altitude.
47
+
48
+ ## Usage
49
+
50
+ ``` python
51
+ from transformers import DetrImageProcessor, DetrForObjectDetection
52
+ import torch
53
+ from PIL import Image
54
+
55
+ img_path = ""
56
+ image = Image.open(img_path)
57
+
58
+ extractor = AutoFeatureExtractor.from_pretrained("TuningAI/DETR-BASE_Marine")
59
+ model = AutoModelForObjectDetection.from_pretrained("TuningAI/DETR-BASE_Marine")
60
+
61
+ inputs = processor(images=image, return_tensors="pt")
62
+ outputs = model(**inputs)
63
+
64
+ # convert outputs (bounding boxes and class logits) to COCO API
65
+ # let's only keep detections with score > 0.9
66
+ target_sizes = torch.tensor([image.size[::-1]])
67
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
68
+
69
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
70
+ box = [round(i, 2) for i in box.tolist()]
71
+ print(
72
+ f"Detected {model.config.id2label[label.item()]} with confidence "
73
+ f"{round(score.item(), 3)} at location {box}"
74
+ )
75
+
76
+ ```
77
+
78
+
79
+ ## License
80
+ This model is provided under the MIT License.
81
+ The Aerial Maritime Image Dataset used for fine-tuning is also under the MIT License.