File size: 2,251 Bytes
e9182ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: skin_decease
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9871794871794872
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# skin_decease

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0680
- Accuracy: 0.9872

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.2359        | 0.8621 | 100  | 0.2427          | 0.9744   |
| 0.086         | 1.7241 | 200  | 0.1178          | 0.9872   |
| 0.0435        | 2.5862 | 300  | 0.0801          | 0.9872   |
| 0.0312        | 3.4483 | 400  | 0.0748          | 0.9872   |
| 0.023         | 4.3103 | 500  | 0.0715          | 0.9872   |
| 0.0197        | 5.1724 | 600  | 0.0696          | 0.9872   |
| 0.0174        | 6.0345 | 700  | 0.0687          | 0.9872   |
| 0.0161        | 6.8966 | 800  | 0.0684          | 0.9872   |
| 0.0151        | 7.7586 | 900  | 0.0680          | 0.9872   |


### Framework versions

- Transformers 4.43.2
- Pytorch 2.2.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1