Ty-Yuki commited on
Commit
ff1f036
·
verified ·
1 Parent(s): 68ed1a4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -194
README.md CHANGED
@@ -3,197 +3,95 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Sample Use
7
+
8
+ ```python
9
+ from transformers import (
10
+ AutoModelForCausalLM,
11
+ AutoTokenizer,
12
+ BitsAndBytesConfig,
13
+ )
14
+ from peft import PeftModel
15
+ import torch
16
+ from tqdm import tqdm
17
+ import json
18
+
19
+ # Hugging Faceで取得したTokenをこちらに貼る。
20
+ HF_TOKEN = "Hugging Face Token"
21
+
22
+ # ベースとなるモデルと学習したLoRAのアダプタ。
23
+ # model_idの値はomnicampusの環境におけるモデルのパスを表しており、それ以外の環境で実行する場合は変更の必要があります。
24
+ model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a"
25
+ # omnicampus以外の環境をご利用の方は以下をご利用ください。
26
+ # base_model_id = "llm-jp/llm-jp-3-13b"
27
+ adapter_id = "" # こちらにアップロードしたHugging FaceのIDを指定してください。
28
+
29
+ # QLoRA config
30
+ bnb_config = BitsAndBytesConfig(
31
+ load_in_4bit=True,
32
+ bnb_4bit_quant_type="nf4",
33
+ bnb_4bit_compute_dtype=torch.bfloat16,
34
+ )
35
+
36
+ # Load model
37
+ model = AutoModelForCausalLM.from_pretrained(
38
+ model_id,
39
+ quantization_config=bnb_config,
40
+ device_map="auto",
41
+ token = HF_TOKEN
42
+ )
43
+
44
+ # Load tokenizer
45
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
46
+
47
+ # 元のモデルにLoRAのアダプタを統合。
48
+ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
49
+
50
+ # データセットの読み込み。
51
+ # omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
52
+ datasets = []
53
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
54
+ item = ""
55
+ for line in f:
56
+ line = line.strip()
57
+ item += line
58
+ if item.endswith("}"):
59
+ datasets.append(json.loads(item))
60
+ item = ""
61
+
62
+ # llmjp
63
+ results = []
64
+ for data in tqdm(datasets):
65
+
66
+ input = data["input"]
67
+
68
+ prompt = f"""### 指示
69
+ {input}
70
+ ### 回答
71
+ """
72
+
73
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
74
+ attention_mask = torch.ones_like(tokenized_input)
75
+ with torch.no_grad():
76
+ outputs = model.generate(
77
+ tokenized_input,
78
+ attention_mask=attention_mask,
79
+ max_new_tokens=100,
80
+ do_sample=False,
81
+ repetition_penalty=1.2,
82
+ pad_token_id=tokenizer.eos_token_id
83
+ )[0]
84
+ output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
85
+
86
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
87
+
88
+ # こちらで生成されたjsolを提出してください。
89
+ # 本コードではinputとeval_aspectも含んでいますが、なくても問題ありません。
90
+ # 必須なのはtask_idとoutputとなります。
91
+ import re
92
+ jsonl_id = re.sub(".*/", "", adapter_id)
93
+ with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
94
+ for result in results:
95
+ json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
96
+ f.write('\n')
97
+ ```