File size: 1,695 Bytes
b4ab697
 
666d3f0
 
b4ab697
 
 
 
 
 
 
666d3f0
b4ab697
 
 
 
 
 
666d3f0
b4ab697
666d3f0
b4ab697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
language:
- es
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper openai-whisper-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper openai-whisper-base

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the llamadas ecu911 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3456
- Wer: 68.6607

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 1.0578        | 2.6596  | 500  | 1.2313          | 73.1571 |
| 0.409         | 5.3191  | 1000 | 1.2251          | 71.8255 |
| 0.2402        | 7.9787  | 1500 | 1.2967          | 65.2451 |
| 0.1526        | 10.6383 | 2000 | 1.3456          | 68.6607 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1