--- library_name: transformers language: - es license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper openai-whisper-base results: [] --- # Whisper openai-whisper-base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the llamadas ecu911 dataset. It achieves the following results on the evaluation set: - Loss: 1.3456 - Wer: 68.6607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 1.0578 | 2.6596 | 500 | 1.2313 | 73.1571 | | 0.409 | 5.3191 | 1000 | 1.2251 | 71.8255 | | 0.2402 | 7.9787 | 1500 | 1.2967 | 65.2451 | | 0.1526 | 10.6383 | 2000 | 1.3456 | 68.6607 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1