File size: 2,456 Bytes
6a1ec63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
inference: false
tags:
- onnx
- roberta
- adapterhub:comsense/cosmosqa
- adapter-transformers
datasets:
- cosmos_qa
language:
- en
---
# ONNX export of Adapter `AdapterHub/roberta-base-pf-cosmos_qa` for roberta-base
## Conversion of [AdapterHub/roberta-base-pf-cosmos_qa](https://huggingface.co/AdapterHub/roberta-base-pf-cosmos_qa) for UKP SQuARE
## Usage
```python
onnx_path = hf_hub_download(repo_id='UKP-SQuARE/roberta-base-pf-cosmos_qa-onnx', filename='model.onnx') # or model_quant.onnx for quantization
onnx_model = InferenceSession(onnx_path, providers=['CPUExecutionProvider'])
context = 'ONNX is an open format to represent models. The benefits of using ONNX include interoperability of frameworks and hardware optimization.'
question = 'What are advantages of ONNX?'
choices = ["Cat", "Horse", "Tiger", "Fish"]tokenizer = AutoTokenizer.from_pretrained('UKP-SQuARE/roberta-base-pf-cosmos_qa-onnx')
raw_input = [[context, question + + choice] for choice in choices]
inputs = tokenizer(raw_input, padding=True, truncation=True, return_tensors="np")
inputs['token_type_ids'] = np.expand_dims(inputs['token_type_ids'], axis=0)
inputs['input_ids'] = np.expand_dims(inputs['input_ids'], axis=0)
inputs['attention_mask'] = np.expand_dims(inputs['attention_mask'], axis=0)
outputs = onnx_model.run(input_feed=dict(inputs), output_names=None)
```
## Architecture & Training
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
## Evaluation results
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
## Citation
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
```bibtex
@inproceedings{poth-etal-2021-what-to-pre-train-on,
title={What to Pre-Train on? Efficient Intermediate Task Selection},
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2104.08247",
pages = "to appear",
}
``` |