File size: 12,120 Bytes
860fee5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
{
"cells": [
{
"cell_type": "markdown",
"id": "cf4403ec",
"metadata": {},
"source": [
"# Notebook to evaluate ChatGPT Peformance"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f708eaa",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import warnings\n",
"import sqlite3 as sql\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
"from huggingface_hub import snapshot_download\n",
"import sys\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "83a1bd00",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.environ[\"OPENAI_API_KEY\"] = \"<key>\""
]
},
{
"cell_type": "markdown",
"id": "b3a647bf",
"metadata": {},
"source": [
"## Set up path"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "996e282d",
"metadata": {},
"outputs": [],
"source": [
"is_google_colab=False"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "5d96087b",
"metadata": {},
"outputs": [],
"source": [
"current_path = \"./\"\n",
"\n",
"def get_path(rel_path):\n",
" return os.path.join(current_path, rel_path)\n",
"\n",
"if is_google_colab:\n",
" hugging_face_path = snapshot_download(\n",
" repo_id=\"USC-Applied-NLP-Group/SQL-Generation\",\n",
" repo_type=\"model\", \n",
" allow_patterns=[\"src/*\", \"train-data/*\", \"deepseek-coder-1.3b-instruct/*\", \"nba-data/*\"], \n",
" )\n",
" sys.path.append(hugging_face_path)\n",
" current_path = hugging_face_path"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "483da9f0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'./nba-data/nba.sqlite'"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_path('nba-data/nba.sqlite')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "5cc9f19f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total dataset examples: 1044\n",
"\n",
"\n"
]
}
],
"source": [
"\n",
"\n",
"warnings.filterwarnings(\"ignore\")\n",
"# Establish a database connection once (adjust the DB path as needed)\n",
"connection = sql.connect(get_path('nba-data/nba.sqlite'))\n",
"cursor = connection.cursor()\n",
"\n",
"# ------------------------------\n",
"# Load dataset and print summary\n",
"# ------------------------------\n",
"df = pd.read_csv(get_path(\"train-data/expanded_sql_train.tsv\"), sep='\\t')\n",
"print(\"Total dataset examples: \" + str(len(df)))\n",
"print(\"\\n\")\n",
"\n",
"# ------------------------------\n",
"# Load tokenizer and model\n",
"# ------------------------------\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "f2d859d8",
"metadata": {},
"source": [
"## Define compare result function for evaluation process"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "a5295234",
"metadata": {},
"outputs": [],
"source": [
"from src.evaluation.compare_result import compare_result\n",
"from src.rag.table_retriever import retrieve_doc"
]
},
{
"cell_type": "markdown",
"id": "0a89a468",
"metadata": {},
"source": [
"## Create evaluation loop for ChatGPT"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "e580dda8",
"metadata": {},
"outputs": [],
"source": [
"from openai import OpenAI\n",
"client = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "69707ee7",
"metadata": {},
"outputs": [],
"source": [
"# ------------------------------\n",
"# Function to evaluate the model on a given dataset\n",
"# ------------------------------\n",
"\n",
"from src.prompts.prompt import input_text\n",
"def run_evaluation(nba_df, title):\n",
" counter = 0\n",
" num_valid = 0\n",
" num_sql_matched = 0\n",
" num_result_matched = 0\n",
" for index, row in nba_df.iterrows():\n",
" # Retrieve relevant schema chunks via RAG\n",
"\n",
" response = client.chat.completions.create(\n",
" model=\"gpt-3.5-turbo\",\n",
" messages=[\n",
" {\"role\": \"user\", \"content\": input_text + row[\"natural_query\"]}\n",
" ]\n",
" )\n",
" \n",
" # Decode the model output.\n",
" generated_query = response.choices[0].message.content\n",
" \n",
" # Clean generated query: remove any prefix and truncate after first semicolon.\n",
" if generated_query.startswith(\"SQLite:\"):\n",
" clean_query = generated_query[len(\"SQLite:\"):].strip()\n",
" elif generated_query.startswith(\"SQL:\"):\n",
" clean_query = generated_query[len(\"SQL:\"):].strip()\n",
" else:\n",
" clean_query = generated_query.strip()\n",
" \n",
" semicolon_idx = clean_query.find(\";\")\n",
" if semicolon_idx != -1:\n",
" clean_query = clean_query[:semicolon_idx+1]\n",
" \n",
" # Execute the cleaned query on the SQLite DB to obtain the actual result.\n",
" \"\"\"\n",
" try:\n",
" cursor.execute(clean_query)\n",
" rows = cursor.fetchall()\n",
" if rows and isinstance(rows[0], (tuple, list)) and len(rows[0]) > 0:\n",
" actual_result = rows[0][0]\n",
" elif rows:\n",
" actual_result = rows[0]\n",
" else:\n",
" actual_result = \"\"\n",
" except Exception as e:\n",
" actual_result = \"Error executing query: \" + str(e)\n",
" \"\"\"\n",
" \n",
" # Compare the ground truth query and expected result to the generated query and actual result.\n",
" valid, sql_matched, result_matched = compare_result(cursor, row[\"sql_query\"], row[\"result\"], generated_query)\n",
" \"\"\"\n",
" print(\"=============================================\")\n",
" print(f\"Overall Valid: {valid}\")\n",
" print(f\"SQL Query Matched: {sql_matched}\")\n",
" print(f\"Result Matched: {result_matched}\")\n",
" print(\"=============================================\\n\")\n",
" \n",
" # Print debug output.\n",
" print(\"----- Ground Truth SQL Query -----\")\n",
" print(row[\"sql_query\"])\n",
" print(\"------------------------------------\\n\")\n",
" print(\"----- Model Generated SQL Query -----\")\n",
" print(generated_query)\n",
" print(\"---------------------------------------\\n\")\n",
" \n",
" print(\"----- Expected Result -----\")\n",
" print(row[\"result\"])\n",
" print(\"----- Actual DB Result -----\")\n",
" print(actual_result)\n",
" print(\"-------------------------------------------------\\n\")\n",
" \"\"\"\n",
" if valid:\n",
" num_valid += 1\n",
" if sql_matched:\n",
" num_sql_matched += 1\n",
" if result_matched:\n",
" num_result_matched += 1\n",
" \n",
" counter += 1\n",
"\n",
" # CONTROL ITERS\n",
" # if counter == 2:\n",
" # break\n",
" \n",
" if counter % 50 == 0:\n",
" print(\"Completed \" + str(counter))\n",
" \n",
" print(\"\\n\" + title + \" results:\")\n",
" print(\"Percent valid: \" + str(num_valid / len(nba_df)))\n",
" print(\"Percent SQLite matched: \" + str(num_sql_matched / len(nba_df)))\n",
" print(\"Percent result matched: \" + str(num_result_matched / len(nba_df)))\n",
" print(\"Dataset length: \" + str(len(nba_df)))\n",
" print(\"-------------------\")\n",
" print(\"Num queries tested: \", counter)\n",
" print(\"Num correct queries: \", num_result_matched)\n",
" print(\"Acc: \", (num_result_matched / counter)*100)\n",
" print(\"-------------------\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "0c3fdc3f",
"metadata": {},
"outputs": [],
"source": [
"def run(nba_df, title):\n",
" counter = 0\n",
" num_valid = 0\n",
" num_sql_matched = 0\n",
" num_result_matched = 0\n",
" for index, row in nba_df.iterrows():\n",
" print(row['natural_query'])"
]
},
{
"cell_type": "markdown",
"id": "8bff68e0",
"metadata": {},
"source": [
"## Run ChatGPT evaluation"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "ce291e30",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Completed 50\n",
"Completed 100\n",
"Completed 150\n",
"Completed 200\n",
"Completed 250\n",
"Completed 300\n",
"Completed 350\n",
"Completed 400\n",
"Completed 450\n",
"Completed 500\n",
"Completed 550\n",
"Completed 600\n",
"Completed 650\n",
"Completed 700\n",
"Completed 750\n",
"Completed 800\n",
"Completed 850\n",
"Completed 900\n",
"Completed 950\n",
"Completed 1000\n",
"\n",
"All training data results:\n",
"Percent valid: 0.8630268199233716\n",
"Percent SQLite matched: 0.20114942528735633\n",
"Percent result matched: 0.6293103448275862\n",
"Dataset length: 1044\n",
"-------------------\n",
"Num queries tested: 1044\n",
"Num correct queries: 657\n",
"Acc: 62.93103448275862\n",
"-------------------\n",
"Dataset length: 1044\n"
]
}
],
"source": [
"# ------------------------------\n",
"# Run evaluation on the full training dataset\n",
"# ------------------------------\n",
"run_evaluation(df, \"All training data\")\n",
"print(\"Dataset length: \" + str(len(df)))"
]
},
{
"cell_type": "markdown",
"id": "b21994fa",
"metadata": {},
"source": [
"## Run RAG evaluation on small query dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2d12248",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Completed 50\n",
"Completed 100\n",
"Completed 150\n",
"Completed 200\n",
"\n",
"Less than 90 results:\n",
"Percent valid: 0.8979591836734694\n",
"Percent SQLite matched: 0.37551020408163266\n",
"Percent result matched: 0.7061224489795919\n",
"Dataset length: 245\n",
"-------------------\n",
"Num queries tested: 245\n",
"Num correct queries: 173\n",
"Acc: 70.61224489795919\n",
"-------------------\n",
"Dataset length: 245\n"
]
}
],
"source": [
"less_than_90_df = pd.read_csv(get_path(\"train-data/less_than_90.tsv\"), sep='\\t')\n",
"run_evaluation(less_than_90_df, \"Less than 90\")\n",
"print(\"Dataset length: \" + str(len(less_than_90_df)))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "CSCI544",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|