File size: 7,376 Bytes
99a8882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
{
"cells": [
{
"cell_type": "markdown",
"id": "e7219917",
"metadata": {},
"source": [
"# Create test dataset, by excluding certain queries from training and augmented datasets"
]
},
{
"cell_type": "markdown",
"id": "747fe513",
"metadata": {},
"source": [
"## Load training and augmented datasets"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "e1e2c759",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import re\n",
"df_train = pd.read_csv(\"train-data/sql_train.tsv\", sep='\\t')\n",
"df_augment = pd.read_csv(\"train-data/data_augmentation_final.tsv\", sep='\\t')"
]
},
{
"cell_type": "markdown",
"id": "6267d493",
"metadata": {},
"source": [
"## Establish array of team names"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "a59f9960",
"metadata": {},
"outputs": [],
"source": [
"team_array = [\n",
"\"Atlanta Hawks\",\n",
"\"Boston Celtics\",\n",
"\"Cleveland Cavaliers\",\n",
"\"New Orleans Pelicans\",\n",
"\"Chicago Bulls\",\n",
"\"Dallas Mavericks\",\n",
"\"Denver Nuggets\",\n",
"\"Golden State Warriors\",\n",
"\"Houston Rockets\",\n",
"\"Los Angeles Clippers\",\n",
"\"Los Angeles Lakers\",\n",
"\"Miami Heat\",\n",
"\"Milwaukee Bucks\",\n",
"\"Minnesota Timberwolves\",\n",
"\"Brooklyn Nets\",\n",
"\"New York Knicks\",\n",
"\"Orlando Magic\",\n",
"\"Indiana Pacers\",\n",
"\"Philadelphia 76ers\",\n",
"\"Phoenix Suns\",\n",
"\"Portland Trail Blazers\",\n",
"\"Sacramento Kings\",\n",
"\"San Antonio Spurs\",\n",
"\"Oklahoma City Thunder\",\n",
"\"Toronto Raptors\",\n",
"\"Utah Jazz\",\n",
"\"Memphis Grizzlies\",\n",
"\"Washington Wizards\",\n",
"\"Detroit Pistons\",\n",
"\"Charlotte Hornets\"]"
]
},
{
"cell_type": "markdown",
"id": "87dbf2dd",
"metadata": {},
"source": [
"## Define regex expression to build new columns in the dataframes with the team names masked out"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "188544ef",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Which NBA teams were established after the year 2000? List their names and founding years, sorted from newest to oldest\n",
"What is the most points the <TEAM> have scored at home?\n",
"What is the second-highest number of points the <TEAM> have ever scored in a single home game?\n",
"How many home games did the <TEAM> win in the 2017 season?\n",
"What is the average number of assists by the <TEAM> in home wins?\n",
"Which game had the highest total points scored by both teams when the <TEAM> played at home?\n",
"What is the <TEAM>' largest lead in a home game during the 2016 season?\n",
"How many times did the <TEAM> score over 120 points at home?\n",
"What is the highest three-point percentage the <TEAM> achieved in an away game?\n",
"What was the average points difference in home games won by the <TEAM>?\n"
]
}
],
"source": [
"# Compile a regex pattern for matching any team name\n",
"team_pattern = re.compile(\"|\".join(map(re.escape, sorted(team_array, key=len, reverse=True))))\n",
"\n",
"def normalize_query(query):\n",
" \"\"\"Replace any known team name with <TEAM>.\"\"\"\n",
" return team_pattern.sub(\"<TEAM>\", query)\n",
"\n",
"# Assuming `df_train` and `df_augmented` are your two dataframes\n",
"df_train[\"template\"] = df_train[\"natural_query\"].apply(normalize_query)\n",
"df_augment[\"template\"] = df_augment[\"natural_query\"].apply(normalize_query)\n",
"\n",
"# Test performance of regex masking\n",
"count = 0\n",
"for index, row in df_train.iterrows():\n",
" print(row['template'])\n",
" count += 1\n",
" if count == 10:\n",
" break\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "b9ff879f",
"metadata": {},
"source": [
"## Create new dataframe to hold test data, delete entries from test set in train and augment dataframes"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "ffb238d9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1044\n",
"786\n",
"1870\n",
"1367\n",
"150\n"
]
}
],
"source": [
"# Create new dataframes\n",
"#df_test = pd.DataFrame(columns=['natural_query', 'sql_query', 'result'])\n",
"#df_new_train = df_train.copy(deep=True)\n",
"#df_new_augment = df_augment.copy(deep=True)\n",
"\n",
"# Sample some test queries from the original training set\n",
"test_samples = df_train.sample(n=150) # Or whatever number you want\n",
"\n",
"# Get the set of template forms of the test samples\n",
"test_templates = set(test_samples[\"template\"])\n",
"\n",
"# Filter out those entries from the train and augmented sets\n",
"df_train_filtered = df_train[~df_train[\"template\"].isin(test_templates)].drop(columns=[\"template\"])\n",
"df_augment_filtered = df_augment[~df_augment[\"template\"].isin(test_templates)].drop(columns=[\"template\"])\n",
"\n",
"print(len(df_train))\n",
"print(len(df_train_filtered))\n",
"print(len(df_augment))\n",
"print(len(df_augment_filtered))\n",
"print(len(test_samples))\n"
]
},
{
"cell_type": "markdown",
"id": "84896991",
"metadata": {},
"source": [
"## Check distribution of new datasets to ensure they match original"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "9d3587ad",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"36\n"
]
}
],
"source": [
"count = 0\n",
"for index, row in test_samples.iterrows():\n",
" if len(row['sql_query']) <= 90:\n",
" count += 1\n",
"\n",
"print(count)"
]
},
{
"cell_type": "markdown",
"id": "2484fabf",
"metadata": {},
"source": [
"## Save new train and test dataframes to tsv"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "c546ba58",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"150\n",
"2213\n"
]
}
],
"source": [
"df = pd.concat([df_train_filtered, df_augment_filtered])\n",
"print(len(test_samples))\n",
"print(len(df))\n",
"test_samples.to_csv('./train-data/test_set.tsv', index=False, sep='\\t', columns=['natural_query', 'sql_query', 'result'])\n",
"df.to_csv('./train-data/train_set.tsv', index=False, sep='\\t', columns=['natural_query', 'sql_query', 'result'])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|