Create test_rag.py
Browse files- test_rag.py +364 -0
test_rag.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import warnings
|
3 |
+
import torch
|
4 |
+
import time
|
5 |
+
import math
|
6 |
+
import sqlite3 as sql
|
7 |
+
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
from rag_metadata import SQLMetadataRetriever
|
10 |
+
|
11 |
+
warnings.filterwarnings("ignore")
|
12 |
+
|
13 |
+
# Establish a database connection once (adjust the DB path as needed)
|
14 |
+
connection = sql.connect('./nba-data/nba.sqlite')
|
15 |
+
cursor = connection.cursor()
|
16 |
+
|
17 |
+
# ------------------------------
|
18 |
+
# Load dataset and print summary
|
19 |
+
# ------------------------------
|
20 |
+
df = pd.read_csv("./train-data/sql_train.tsv", sep='\t')
|
21 |
+
print("Total dataset examples: " + str(len(df)))
|
22 |
+
print("\n")
|
23 |
+
|
24 |
+
# ------------------------------
|
25 |
+
# Load tokenizer and model
|
26 |
+
# ------------------------------
|
27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("./deepseek-coder-1.3b-instruct")
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
"./deepseek-coder-1.3b-instruct",
|
31 |
+
torch_dtype=torch.bfloat16,
|
32 |
+
device_map=device
|
33 |
+
)
|
34 |
+
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
35 |
+
|
36 |
+
# ------------------------------
|
37 |
+
# Initialize RAG retriever and load schema metadata
|
38 |
+
# ------------------------------
|
39 |
+
retriever = SQLMetadataRetriever()
|
40 |
+
|
41 |
+
metadata_docs = [
|
42 |
+
'''team Table
|
43 |
+
Stores information about NBA teams.
|
44 |
+
CREATE TABLE IF NOT EXISTS "team" (
|
45 |
+
"id" TEXT PRIMARY KEY, -- Unique identifier for the team
|
46 |
+
"full_name" TEXT, -- Full official name of the team (e.g., "Los Angeles Lakers")
|
47 |
+
"abbreviation" TEXT, -- Shortened team name (e.g., "LAL")
|
48 |
+
"nickname" TEXT, -- Commonly used nickname for the team (e.g., "Lakers")
|
49 |
+
"city" TEXT, -- City where the team is based
|
50 |
+
"state" TEXT, -- State where the team is located
|
51 |
+
"year_founded" REAL -- Year the team was established
|
52 |
+
);''',
|
53 |
+
'''game Table
|
54 |
+
Contains detailed statistics for each NBA game, including home and away team performance.
|
55 |
+
CREATE TABLE IF NOT EXISTS "game" (
|
56 |
+
"season_id" TEXT, -- Season identifier, formatted as "2YYYY" (e.g., "21970" for the 1970 season)
|
57 |
+
"team_id_home" TEXT, -- ID of the home team (matches "id" in team table)
|
58 |
+
"team_abbreviation_home" TEXT, -- Abbreviation of the home team
|
59 |
+
"team_name_home" TEXT, -- Full name of the home team
|
60 |
+
"game_id" TEXT PRIMARY KEY, -- Unique identifier for the game
|
61 |
+
"game_date" TIMESTAMP, -- Date the game was played (YYYY-MM-DD format)
|
62 |
+
"matchup_home" TEXT, -- Matchup details including opponent (e.g., "LAL vs. BOS")
|
63 |
+
"wl_home" TEXT, -- "W" if the home team won, "L" if they lost
|
64 |
+
"min" INTEGER, -- Total minutes played in the game
|
65 |
+
"fgm_home" REAL, -- Field goals made by the home team
|
66 |
+
"fga_home" REAL, -- Field goals attempted by the home team
|
67 |
+
"fg_pct_home" REAL, -- Field goal percentage of the home team
|
68 |
+
"fg3m_home" REAL, -- Three-point field goals made by the home team
|
69 |
+
"fg3a_home" REAL, -- Three-point attempts by the home team
|
70 |
+
"fg3_pct_home" REAL, -- Three-point field goal percentage of the home team
|
71 |
+
"ftm_home" REAL, -- Free throws made by the home team
|
72 |
+
"fta_home" REAL, -- Free throws attempted by the home team
|
73 |
+
"ft_pct_home" REAL, -- Free throw percentage of the home team
|
74 |
+
"oreb_home" REAL, -- Offensive rebounds by the home team
|
75 |
+
"dreb_home" REAL, -- Defensive rebounds by the home team
|
76 |
+
"reb_home" REAL, -- Total rebounds by the home team
|
77 |
+
"ast_home" REAL, -- Assists by the home team
|
78 |
+
"stl_home" REAL, -- Steals by the home team
|
79 |
+
"blk_home" REAL, -- Blocks by the home team
|
80 |
+
"tov_home" REAL, -- Turnovers by the home team
|
81 |
+
"pf_home" REAL, -- Personal fouls by the home team
|
82 |
+
"pts_home" REAL, -- Total points scored by the home team
|
83 |
+
"plus_minus_home" INTEGER, -- Plus/minus rating for the home team
|
84 |
+
"video_available_home" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)
|
85 |
+
"team_id_away" TEXT, -- ID of the away team
|
86 |
+
"team_abbreviation_away" TEXT, -- Abbreviation of the away team
|
87 |
+
"team_name_away" TEXT, -- Full name of the away team
|
88 |
+
"matchup_away" TEXT, -- Matchup details from the away team’s perspective
|
89 |
+
"wl_away" TEXT, -- "W" if the away team won, "L" if they lost
|
90 |
+
"fgm_away" REAL, -- Field goals made by the away team
|
91 |
+
"fga_away" REAL, -- Field goals attempted by the away team
|
92 |
+
"fg_pct_away" REAL, -- Field goal percentage of the away team
|
93 |
+
"fg3m_away" REAL, -- Three-point field goals made by the away team
|
94 |
+
"fg3a_away" REAL, -- Three-point attempts by the away team
|
95 |
+
"fg3_pct_away" REAL, -- Three-point field goal percentage of the away team
|
96 |
+
"ftm_away" REAL, -- Free throws made by the away team
|
97 |
+
"fta_away" REAL, -- Free throws attempted by the away team
|
98 |
+
"ft_pct_away" REAL, -- Free throw percentage of the away team
|
99 |
+
"oreb_away" REAL, -- Offensive rebounds by the away team
|
100 |
+
"dreb_away" REAL, -- Defensive rebounds by the away team
|
101 |
+
"reb_away" REAL, -- Total rebounds by the away team
|
102 |
+
"ast_away" REAL, -- Assists by the away team
|
103 |
+
"stl_away" REAL, -- Steals by the away team
|
104 |
+
"blk_away" REAL, -- Blocks by the away team
|
105 |
+
"tov_away" REAL, -- Turnovers by the away team
|
106 |
+
"pf_away" REAL, -- Personal fouls by the away team
|
107 |
+
"pts_away" REAL, -- Total points scored by the away team
|
108 |
+
"plus_minus_away" INTEGER, -- Plus/minus rating for the away team
|
109 |
+
"video_available_away" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)
|
110 |
+
"season_type" TEXT -- Regular season or playoffs
|
111 |
+
);
|
112 |
+
''',
|
113 |
+
'''other_stats Table
|
114 |
+
Stores additional statistics, linked to the game table via game_id.
|
115 |
+
CREATE TABLE IF NOT EXISTS "other_stats" (
|
116 |
+
"game_id" TEXT, -- Unique game identifier, matches id column from game table
|
117 |
+
"league_id" TEXT, -- League identifier
|
118 |
+
"team_id_home" TEXT, -- Home team identifier
|
119 |
+
"team_abbreviation_home" TEXT, -- Home team abbreviation
|
120 |
+
"team_city_home" TEXT, -- Home team city
|
121 |
+
"pts_paint_home" INTEGER, -- Points in the paint by the home team
|
122 |
+
"pts_2nd_chance_home" INTEGER, -- Second chance points by the home team
|
123 |
+
"pts_fb_home" INTEGER, -- Fast break points by the home team
|
124 |
+
"largest_lead_home" INTEGER,-- Largest lead by the home team
|
125 |
+
"lead_changes" INTEGER, -- Number of lead changes
|
126 |
+
"times_tied" INTEGER, -- Number of times the score was tied
|
127 |
+
"team_turnovers_home" INTEGER, -- Home team turnovers
|
128 |
+
"total_turnovers_home" INTEGER, -- Total turnovers by the home team
|
129 |
+
"team_rebounds_home" INTEGER, -- Home team rebounds
|
130 |
+
"pts_off_to_home" INTEGER, -- Points off turnovers by the home team
|
131 |
+
"team_id_away" TEXT, -- Away team identifier
|
132 |
+
"team_abbreviation_away" TEXT, -- Away team abbreviation
|
133 |
+
"pts_paint_away" INTEGER, -- Points in the paint by the away team
|
134 |
+
"pts_2nd_chance_away" INTEGER, -- Second chance points by the away team
|
135 |
+
"pts_fb_away" INTEGER, -- Fast break points by the away team
|
136 |
+
"largest_lead_away" INTEGER,-- Largest lead by the away team
|
137 |
+
"team_turnovers_away" INTEGER, -- Away team turnovers
|
138 |
+
"total_turnovers_away" INTEGER, -- Total turnovers by the away team
|
139 |
+
"team_rebounds_away" INTEGER, -- Away team rebounds
|
140 |
+
"pts_off_to_away" INTEGER -- Points off turnovers by the away team
|
141 |
+
);
|
142 |
+
''',
|
143 |
+
'''Team Name Information
|
144 |
+
In plaintext user questions, only the full team names will be used, but in the queries you may use either full names or abbreviations.
|
145 |
+
Full names are used with the game table, while abbreviations should be used with the other_stats table.
|
146 |
+
Team names and abbreviations (separated by |):
|
147 |
+
Atlanta Hawks|ATL, Boston Celtics|BOS, Cleveland Cavaliers|CLE, New Orleans Pelicans|NOP,
|
148 |
+
Chicago Bulls|CHI, Dallas Mavericks|DAL, Denver Nuggets|DEN, Golden State Warriors|GSW,
|
149 |
+
Houston Rockets|HOU, Los Angeles Clippers|LAC, Los Angeles Lakers|LAL, Miami Heat|MIA,
|
150 |
+
Milwaukee Bucks|MIL, Minnesota Timberwolves|MIN, Brooklyn Nets|BKN, New York Knicks|NYK,
|
151 |
+
Orlando Magic|ORL, Indiana Pacers|IND, Philadelphia 76ers|PHI, Phoenix Suns|PHX,
|
152 |
+
Portland Trail Blazers|POR, Sacramento Kings|SAC, San Antonio Spurs|SAS,
|
153 |
+
Oklahoma City Thunder|OKC, Toronto Raptors|TOR, Utah Jazz|UTA, Memphis Grizzlies|MEM,
|
154 |
+
Washington Wizards|WAS, Detroit Pistons|DET, Charlotte Hornets|CHA
|
155 |
+
'''
|
156 |
+
]
|
157 |
+
|
158 |
+
retriever.add_documents(metadata_docs)
|
159 |
+
|
160 |
+
# ------------------------------
|
161 |
+
# Define a function to compare model output to ground truth
|
162 |
+
# ------------------------------
|
163 |
+
def compare_result(sample_query, sample_result, generated_query, actual_result):
|
164 |
+
# Remove any prefixes from the generated query
|
165 |
+
if generated_query.startswith("SQLite: "):
|
166 |
+
query = generated_query[len("SQLite: "):]
|
167 |
+
elif generated_query.startswith("SQL: "):
|
168 |
+
query = generated_query[len("SQL: "):]
|
169 |
+
else:
|
170 |
+
query = generated_query
|
171 |
+
|
172 |
+
# Truncate query after the first semicolon (if present)
|
173 |
+
semicolon_index = query.find(";")
|
174 |
+
if semicolon_index != -1:
|
175 |
+
query = query[:semicolon_index+1]
|
176 |
+
|
177 |
+
# Simple function to clean strings: removes whitespace and lowercases.
|
178 |
+
clean_str = lambda s: "".join(s.split()).lower()
|
179 |
+
|
180 |
+
# Compare the generated query text with the sample query.
|
181 |
+
query_match = (clean_str(query) == clean_str(sample_query))
|
182 |
+
|
183 |
+
# Compare the expected result and the actual result numerically if possible.
|
184 |
+
try:
|
185 |
+
sample_val = float(sample_result)
|
186 |
+
actual_val = float(actual_result)
|
187 |
+
result_match = math.isclose(sample_val, actual_val, abs_tol=1e-6)
|
188 |
+
except Exception:
|
189 |
+
# Otherwise, do a cleaned string comparison.
|
190 |
+
result_match = (clean_str(str(sample_result)) == clean_str(str(actual_result)))
|
191 |
+
|
192 |
+
overall_valid = query_match and result_match
|
193 |
+
|
194 |
+
# Debug output.
|
195 |
+
print("DEBUG: Expected Result (from dataset):", sample_result)
|
196 |
+
print("DEBUG: Actual DB Result:", actual_result)
|
197 |
+
try:
|
198 |
+
sample_val = float(sample_result)
|
199 |
+
actual_val = float(actual_result)
|
200 |
+
print("DEBUG: Numeric Comparison result:", math.isclose(sample_val, actual_val, abs_tol=1e-6))
|
201 |
+
except Exception:
|
202 |
+
print("DEBUG: Numeric Comparison: N/A")
|
203 |
+
|
204 |
+
return overall_valid, query_match, result_match
|
205 |
+
|
206 |
+
|
207 |
+
# ------------------------------
|
208 |
+
# Function to evaluate the model on a given dataset
|
209 |
+
# ------------------------------
|
210 |
+
def run_evaluation(nba_df, title):
|
211 |
+
counter = 0
|
212 |
+
num_valid = 0
|
213 |
+
num_sql_matched = 0
|
214 |
+
num_result_matched = 0
|
215 |
+
for index, row in nba_df.iterrows():
|
216 |
+
# Retrieve relevant schema chunks via RAG
|
217 |
+
relevant_schemas = retriever.retrieve(row["natural_query"], top_k=2)
|
218 |
+
schema_block = "\n\n".join(relevant_schemas)
|
219 |
+
|
220 |
+
# Build the prompt with instructions, schema, examples, and current request.
|
221 |
+
input_text = f"""
|
222 |
+
You are an AI assistant that generates SQL queries for an NBA database based on user questions.
|
223 |
+
|
224 |
+
### Relevant Schema:
|
225 |
+
{schema_block}
|
226 |
+
|
227 |
+
### Instructions:
|
228 |
+
- Generate a valid SQL query to retrieve relevant data from the database.
|
229 |
+
- Use column names correctly based on the provided schema.
|
230 |
+
- Output only the SQL query as plain text.
|
231 |
+
|
232 |
+
### Example Queries:
|
233 |
+
Use team_name_home and team_name_away to match teams to the game table.
|
234 |
+
Use team_abbreviation_home and team_abbreviation away to match teams to the other_stats table.
|
235 |
+
To filter by season, use season_id = '2YYYY'.
|
236 |
+
Example: season_id = '22005' for 2005.
|
237 |
+
Ensure queries return relevant columns and avoid unnecessary joins.
|
238 |
+
|
239 |
+
Example User Requests and SQLite Queries
|
240 |
+
Request:
|
241 |
+
"What is the most points the Los Angeles Lakers have ever scored at home?"
|
242 |
+
SQLite:
|
243 |
+
SELECT MAX(pts_home)
|
244 |
+
FROM game
|
245 |
+
WHERE team_name_home = 'Los Angeles Lakers';
|
246 |
+
|
247 |
+
Request:
|
248 |
+
"Which teams are located in the state of California?"
|
249 |
+
SQLite:
|
250 |
+
SELECT full_name FROM team WHERE state = 'California';
|
251 |
+
|
252 |
+
Request:
|
253 |
+
"Which team had the highest number of team turnovers in an away game?"
|
254 |
+
SQLite:
|
255 |
+
SELECT team_abbreviation_away FROM other_stats ORDER BY team_turnovers_away DESC LIMIT 1;
|
256 |
+
|
257 |
+
Request:
|
258 |
+
"Which teams were founded before 1979?"
|
259 |
+
SQLite:
|
260 |
+
SELECT full_name FROM team WHERE year_founded < 1979;
|
261 |
+
|
262 |
+
Request:
|
263 |
+
"Find the Boston Celtics largest home victory margin in the 2008 season."
|
264 |
+
SQLite:
|
265 |
+
SELECT MAX(pts_home - pts_away) AS biggest_win
|
266 |
+
FROM game
|
267 |
+
WHERE team_name_home = 'Boston Celtics' AND season_id = '22008';
|
268 |
+
|
269 |
+
Generate only the SQLite query prefaced by SQLite: and no other text. Now generate an SQLite query for the following user request.
|
270 |
+
Request: {row["natural_query"]}
|
271 |
+
"""
|
272 |
+
messages = [{'role': 'user', 'content': input_text}]
|
273 |
+
prompt_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
274 |
+
inputs = tokenizer(prompt_text, return_tensors="pt", padding=True).to(model.device)
|
275 |
+
|
276 |
+
outputs = model.generate(
|
277 |
+
**inputs,
|
278 |
+
max_new_tokens=512,
|
279 |
+
do_sample=False,
|
280 |
+
top_k=50,
|
281 |
+
top_p=0.95,
|
282 |
+
num_return_sequences=1,
|
283 |
+
eos_token_id=tokenizer.eos_token_id,
|
284 |
+
pad_token_id=tokenizer.eos_token_id
|
285 |
+
)
|
286 |
+
|
287 |
+
# Decode the model output.
|
288 |
+
generated_query = tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)
|
289 |
+
|
290 |
+
# Clean generated query: remove any prefix and truncate after first semicolon.
|
291 |
+
if generated_query.startswith("SQLite:"):
|
292 |
+
clean_query = generated_query[len("SQLite:"):].strip()
|
293 |
+
elif generated_query.startswith("SQL:"):
|
294 |
+
clean_query = generated_query[len("SQL:"):].strip()
|
295 |
+
else:
|
296 |
+
clean_query = generated_query.strip()
|
297 |
+
|
298 |
+
semicolon_idx = clean_query.find(";")
|
299 |
+
if semicolon_idx != -1:
|
300 |
+
clean_query = clean_query[:semicolon_idx+1]
|
301 |
+
|
302 |
+
# Execute the cleaned query on the SQLite DB to obtain the actual result.
|
303 |
+
try:
|
304 |
+
cursor.execute(clean_query)
|
305 |
+
rows = cursor.fetchall()
|
306 |
+
if rows and isinstance(rows[0], (tuple, list)) and len(rows[0]) > 0:
|
307 |
+
actual_result = rows[0][0]
|
308 |
+
elif rows:
|
309 |
+
actual_result = rows[0]
|
310 |
+
else:
|
311 |
+
actual_result = ""
|
312 |
+
except Exception as e:
|
313 |
+
actual_result = "Error executing query: " + str(e)
|
314 |
+
|
315 |
+
# Compare the ground truth query and expected result to the generated query and actual result.
|
316 |
+
valid, sql_matched, result_matched = compare_result(row["sql_query"], row["result"], generated_query, actual_result)
|
317 |
+
print("=============================================")
|
318 |
+
print(f"Overall Valid: {valid}")
|
319 |
+
print(f"SQL Query Matched: {sql_matched}")
|
320 |
+
print(f"Result Matched: {result_matched}")
|
321 |
+
print("=============================================\n")
|
322 |
+
|
323 |
+
# Print debug output.
|
324 |
+
print("----- Ground Truth SQL Query -----")
|
325 |
+
print(row["sql_query"])
|
326 |
+
print("------------------------------------\n")
|
327 |
+
print("----- Model Generated SQL Query -----")
|
328 |
+
print(generated_query)
|
329 |
+
print("---------------------------------------\n")
|
330 |
+
|
331 |
+
print("----- Expected Result -----")
|
332 |
+
print(row["result"])
|
333 |
+
print("----- Actual DB Result -----")
|
334 |
+
print(actual_result)
|
335 |
+
print("-------------------------------------------------\n")
|
336 |
+
|
337 |
+
if valid:
|
338 |
+
num_valid += 1
|
339 |
+
if sql_matched:
|
340 |
+
num_sql_matched += 1
|
341 |
+
if result_matched:
|
342 |
+
num_result_matched += 1
|
343 |
+
|
344 |
+
counter += 1
|
345 |
+
|
346 |
+
# CONTROL ITERS
|
347 |
+
# if counter == 2:
|
348 |
+
# break
|
349 |
+
|
350 |
+
if counter % 50 == 0:
|
351 |
+
print("Completed " + str(counter))
|
352 |
+
|
353 |
+
print("\n" + title + " results:")
|
354 |
+
print("Percent valid: " + str(num_valid / len(nba_df)))
|
355 |
+
print("Percent SQLite matched: " + str(num_sql_matched / len(nba_df)))
|
356 |
+
print("Percent result matched: " + str(num_result_matched / len(nba_df)))
|
357 |
+
print("Dataset length: " + str(len(nba_df)))
|
358 |
+
|
359 |
+
|
360 |
+
# ------------------------------
|
361 |
+
# Run evaluation on the full training dataset
|
362 |
+
# ------------------------------
|
363 |
+
run_evaluation(df, "All training data")
|
364 |
+
print("Dataset length: " + str(len(df)))
|