Add second RAG notebook
Browse files- src/rag/table_documents.py +104 -0
- src/rag/table_retriever.py +131 -0
- src/rag/team_documents.py +13 -0
- test_rag_2.ipynb +489 -0
- train-data/expanded_sql_train.tsv +0 -0
src/rag/table_documents.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
team_table_document = '''team Table
|
2 |
+
Stores information about NBA teams.
|
3 |
+
CREATE TABLE IF NOT EXISTS "team" (
|
4 |
+
"id" TEXT PRIMARY KEY, -- Unique identifier for the team
|
5 |
+
"full_name" TEXT, -- Full official name of the team (e.g., "Los Angeles Lakers")
|
6 |
+
"abbreviation" TEXT, -- Shortened team name (e.g., "LAL")
|
7 |
+
"nickname" TEXT, -- Commonly used nickname for the team (e.g., "Lakers")
|
8 |
+
"city" TEXT, -- City where the team is based
|
9 |
+
"state" TEXT, -- State where the team is located
|
10 |
+
"year_founded" REAL -- Year the team was established
|
11 |
+
);'''
|
12 |
+
|
13 |
+
game_table_document = '''game Table
|
14 |
+
Contains detailed statistics for each NBA game, including home and away team performance.
|
15 |
+
CREATE TABLE IF NOT EXISTS "game" (
|
16 |
+
"season_id" TEXT, -- Season identifier, formatted as "2YYYY" (e.g., "21970" for the 1970 season)
|
17 |
+
"team_id_home" TEXT, -- ID of the home team (matches "id" in team table)
|
18 |
+
"team_abbreviation_home" TEXT, -- Abbreviation of the home team
|
19 |
+
"team_name_home" TEXT, -- Full name of the home team
|
20 |
+
"game_id" TEXT PRIMARY KEY, -- Unique identifier for the game
|
21 |
+
"game_date" TIMESTAMP, -- Date the game was played (YYYY-MM-DD format)
|
22 |
+
"matchup_home" TEXT, -- Matchup details including opponent (e.g., "LAL vs. BOS")
|
23 |
+
"wl_home" TEXT, -- "W" if the home team won, "L" if they lost
|
24 |
+
"min" INTEGER, -- Total minutes played in the game
|
25 |
+
"fgm_home" REAL, -- Field goals made by the home team
|
26 |
+
"fga_home" REAL, -- Field goals attempted by the home team
|
27 |
+
"fg_pct_home" REAL, -- Field goal percentage of the home team
|
28 |
+
"fg3m_home" REAL, -- Three-point field goals made by the home team
|
29 |
+
"fg3a_home" REAL, -- Three-point attempts by the home team
|
30 |
+
"fg3_pct_home" REAL, -- Three-point field goal percentage of the home team
|
31 |
+
"ftm_home" REAL, -- Free throws made by the home team
|
32 |
+
"fta_home" REAL, -- Free throws attempted by the home team
|
33 |
+
"ft_pct_home" REAL, -- Free throw percentage of the home team
|
34 |
+
"oreb_home" REAL, -- Offensive rebounds by the home team
|
35 |
+
"dreb_home" REAL, -- Defensive rebounds by the home team
|
36 |
+
"reb_home" REAL, -- Total rebounds by the home team
|
37 |
+
"ast_home" REAL, -- Assists by the home team
|
38 |
+
"stl_home" REAL, -- Steals by the home team
|
39 |
+
"blk_home" REAL, -- Blocks by the home team
|
40 |
+
"tov_home" REAL, -- Turnovers by the home team
|
41 |
+
"pf_home" REAL, -- Personal fouls by the home team
|
42 |
+
"pts_home" REAL, -- Total points scored by the home team
|
43 |
+
"plus_minus_home" INTEGER, -- Plus/minus rating for the home team
|
44 |
+
"video_available_home" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)
|
45 |
+
"team_id_away" TEXT, -- ID of the away team
|
46 |
+
"team_abbreviation_away" TEXT, -- Abbreviation of the away team
|
47 |
+
"team_name_away" TEXT, -- Full name of the away team
|
48 |
+
"matchup_away" TEXT, -- Matchup details from the away team’s perspective
|
49 |
+
"wl_away" TEXT, -- "W" if the away team won, "L" if they lost
|
50 |
+
"fgm_away" REAL, -- Field goals made by the away team
|
51 |
+
"fga_away" REAL, -- Field goals attempted by the away team
|
52 |
+
"fg_pct_away" REAL, -- Field goal percentage of the away team
|
53 |
+
"fg3m_away" REAL, -- Three-point field goals made by the away team
|
54 |
+
"fg3a_away" REAL, -- Three-point attempts by the away team
|
55 |
+
"fg3_pct_away" REAL, -- Three-point field goal percentage of the away team
|
56 |
+
"ftm_away" REAL, -- Free throws made by the away team
|
57 |
+
"fta_away" REAL, -- Free throws attempted by the away team
|
58 |
+
"ft_pct_away" REAL, -- Free throw percentage of the away team
|
59 |
+
"oreb_away" REAL, -- Offensive rebounds by the away team
|
60 |
+
"dreb_away" REAL, -- Defensive rebounds by the away team
|
61 |
+
"reb_away" REAL, -- Total rebounds by the away team
|
62 |
+
"ast_away" REAL, -- Assists by the away team
|
63 |
+
"stl_away" REAL, -- Steals by the away team
|
64 |
+
"blk_away" REAL, -- Blocks by the away team
|
65 |
+
"tov_away" REAL, -- Turnovers by the away team
|
66 |
+
"pf_away" REAL, -- Personal fouls by the away team
|
67 |
+
"pts_away" REAL, -- Total points scored by the away team
|
68 |
+
"plus_minus_away" INTEGER, -- Plus/minus rating for the away team
|
69 |
+
"video_available_away" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)
|
70 |
+
"season_type" TEXT -- Regular season or playoffs
|
71 |
+
);
|
72 |
+
'''
|
73 |
+
|
74 |
+
other_stats_table_document = '''other_stats Table
|
75 |
+
Stores additional statistics, linked to the game table via game_id.
|
76 |
+
CREATE TABLE IF NOT EXISTS "other_stats" (
|
77 |
+
"game_id" TEXT, -- Unique game identifier, matches id column from game table
|
78 |
+
"league_id" TEXT, -- League identifier
|
79 |
+
"team_id_home" TEXT, -- Home team identifier
|
80 |
+
"team_abbreviation_home" TEXT, -- Home team abbreviation
|
81 |
+
"team_city_home" TEXT, -- Home team city
|
82 |
+
"pts_paint_home" INTEGER, -- Points in the paint by the home team
|
83 |
+
"pts_2nd_chance_home" INTEGER, -- Second chance points by the home team
|
84 |
+
"pts_fb_home" INTEGER, -- Fast break points by the home team
|
85 |
+
"largest_lead_home" INTEGER,-- Largest lead by the home team
|
86 |
+
"lead_changes" INTEGER, -- Number of lead changes
|
87 |
+
"times_tied" INTEGER, -- Number of times the score was tied
|
88 |
+
"team_turnovers_home" INTEGER, -- Home team turnovers
|
89 |
+
"total_turnovers_home" INTEGER, -- Total turnovers by the home team
|
90 |
+
"team_rebounds_home" INTEGER, -- Home team rebounds
|
91 |
+
"pts_off_to_home" INTEGER, -- Points off turnovers by the home team
|
92 |
+
"team_id_away" TEXT, -- Away team identifier
|
93 |
+
"team_abbreviation_away" TEXT, -- Away team abbreviation
|
94 |
+
"pts_paint_away" INTEGER, -- Points in the paint by the away team
|
95 |
+
"pts_2nd_chance_away" INTEGER, -- Second chance points by the away team
|
96 |
+
"pts_fb_away" INTEGER, -- Fast break points by the away team
|
97 |
+
"largest_lead_away" INTEGER,-- Largest lead by the away team
|
98 |
+
"team_turnovers_away" INTEGER, -- Away team turnovers
|
99 |
+
"total_turnovers_away" INTEGER, -- Total turnovers by the away team
|
100 |
+
"team_rebounds_away" INTEGER, -- Away team rebounds
|
101 |
+
"pts_off_to_away" INTEGER -- Points off turnovers by the away team
|
102 |
+
);
|
103 |
+
'''
|
104 |
+
|
src/rag/table_retriever.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
team_table_document = '''team Table
|
2 |
+
Stores information about NBA teams.
|
3 |
+
CREATE TABLE IF NOT EXISTS "team" (
|
4 |
+
"id" TEXT PRIMARY KEY, -- Unique identifier for the team
|
5 |
+
"full_name" TEXT, -- Full official name of the team (e.g., "Los Angeles Lakers")
|
6 |
+
"abbreviation" TEXT, -- Shortened team name (e.g., "LAL")
|
7 |
+
"nickname" TEXT, -- Commonly used nickname for the team (e.g., "Lakers")
|
8 |
+
"city" TEXT, -- City where the team is based
|
9 |
+
"state" TEXT, -- State where the team is located
|
10 |
+
"year_founded" REAL -- Year the team was established
|
11 |
+
);'''
|
12 |
+
|
13 |
+
game_table_document = '''game Table
|
14 |
+
Contains detailed statistics for each NBA game, including home and away team performance.
|
15 |
+
CREATE TABLE IF NOT EXISTS "game" (
|
16 |
+
"season_id" TEXT, -- Season identifier, formatted as "2YYYY" (e.g., "21970" for the 1970 season)
|
17 |
+
"team_id_home" TEXT, -- ID of the home team (matches "id" in team table)
|
18 |
+
"team_abbreviation_home" TEXT, -- Abbreviation of the home team
|
19 |
+
"team_name_home" TEXT, -- Full name of the home team
|
20 |
+
"game_id" TEXT PRIMARY KEY, -- Unique identifier for the game
|
21 |
+
"game_date" TIMESTAMP, -- Date the game was played (YYYY-MM-DD format)
|
22 |
+
"matchup_home" TEXT, -- Matchup details including opponent (e.g., "LAL vs. BOS")
|
23 |
+
"wl_home" TEXT, -- "W" if the home team won, "L" if they lost
|
24 |
+
"min" INTEGER, -- Total minutes played in the game
|
25 |
+
"fgm_home" REAL, -- Field goals made by the home team
|
26 |
+
"fga_home" REAL, -- Field goals attempted by the home team
|
27 |
+
"fg_pct_home" REAL, -- Field goal percentage of the home team
|
28 |
+
"fg3m_home" REAL, -- Three-point field goals made by the home team
|
29 |
+
"fg3a_home" REAL, -- Three-point attempts by the home team
|
30 |
+
"fg3_pct_home" REAL, -- Three-point field goal percentage of the home team
|
31 |
+
"ftm_home" REAL, -- Free throws made by the home team
|
32 |
+
"fta_home" REAL, -- Free throws attempted by the home team
|
33 |
+
"ft_pct_home" REAL, -- Free throw percentage of the home team
|
34 |
+
"oreb_home" REAL, -- Offensive rebounds by the home team
|
35 |
+
"dreb_home" REAL, -- Defensive rebounds by the home team
|
36 |
+
"reb_home" REAL, -- Total rebounds by the home team
|
37 |
+
"ast_home" REAL, -- Assists by the home team
|
38 |
+
"stl_home" REAL, -- Steals by the home team
|
39 |
+
"blk_home" REAL, -- Blocks by the home team
|
40 |
+
"tov_home" REAL, -- Turnovers by the home team
|
41 |
+
"pf_home" REAL, -- Personal fouls by the home team
|
42 |
+
"pts_home" REAL, -- Total points scored by the home team
|
43 |
+
"plus_minus_home" INTEGER, -- Plus/minus rating for the home team
|
44 |
+
"video_available_home" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)
|
45 |
+
"team_id_away" TEXT, -- ID of the away team
|
46 |
+
"team_abbreviation_away" TEXT, -- Abbreviation of the away team
|
47 |
+
"team_name_away" TEXT, -- Full name of the away team
|
48 |
+
"matchup_away" TEXT, -- Matchup details from the away team’s perspective
|
49 |
+
"wl_away" TEXT, -- "W" if the away team won, "L" if they lost
|
50 |
+
"fgm_away" REAL, -- Field goals made by the away team
|
51 |
+
"fga_away" REAL, -- Field goals attempted by the away team
|
52 |
+
"fg_pct_away" REAL, -- Field goal percentage of the away team
|
53 |
+
"fg3m_away" REAL, -- Three-point field goals made by the away team
|
54 |
+
"fg3a_away" REAL, -- Three-point attempts by the away team
|
55 |
+
"fg3_pct_away" REAL, -- Three-point field goal percentage of the away team
|
56 |
+
"ftm_away" REAL, -- Free throws made by the away team
|
57 |
+
"fta_away" REAL, -- Free throws attempted by the away team
|
58 |
+
"ft_pct_away" REAL, -- Free throw percentage of the away team
|
59 |
+
"oreb_away" REAL, -- Offensive rebounds by the away team
|
60 |
+
"dreb_away" REAL, -- Defensive rebounds by the away team
|
61 |
+
"reb_away" REAL, -- Total rebounds by the away team
|
62 |
+
"ast_away" REAL, -- Assists by the away team
|
63 |
+
"stl_away" REAL, -- Steals by the away team
|
64 |
+
"blk_away" REAL, -- Blocks by the away team
|
65 |
+
"tov_away" REAL, -- Turnovers by the away team
|
66 |
+
"pf_away" REAL, -- Personal fouls by the away team
|
67 |
+
"pts_away" REAL, -- Total points scored by the away team
|
68 |
+
"plus_minus_away" INTEGER, -- Plus/minus rating for the away team
|
69 |
+
"video_available_away" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)
|
70 |
+
"season_type" TEXT -- Regular season or playoffs
|
71 |
+
);
|
72 |
+
'''
|
73 |
+
|
74 |
+
other_stats_table_document = '''other_stats Table
|
75 |
+
Stores additional statistics, linked to the game table via game_id.
|
76 |
+
CREATE TABLE IF NOT EXISTS "other_stats" (
|
77 |
+
"game_id" TEXT, -- Unique game identifier, matches id column from game table
|
78 |
+
"league_id" TEXT, -- League identifier
|
79 |
+
"team_id_home" TEXT, -- Home team identifier
|
80 |
+
"team_abbreviation_home" TEXT, -- Home team abbreviation
|
81 |
+
"team_city_home" TEXT, -- Home team city
|
82 |
+
"pts_paint_home" INTEGER, -- Points in the paint by the home team
|
83 |
+
"pts_2nd_chance_home" INTEGER, -- Second chance points by the home team
|
84 |
+
"pts_fb_home" INTEGER, -- Fast break points by the home team
|
85 |
+
"largest_lead_home" INTEGER,-- Largest lead by the home team
|
86 |
+
"lead_changes" INTEGER, -- Number of lead changes
|
87 |
+
"times_tied" INTEGER, -- Number of times the score was tied
|
88 |
+
"team_turnovers_home" INTEGER, -- Home team turnovers
|
89 |
+
"total_turnovers_home" INTEGER, -- Total turnovers by the home team
|
90 |
+
"team_rebounds_home" INTEGER, -- Home team rebounds
|
91 |
+
"pts_off_to_home" INTEGER, -- Points off turnovers by the home team
|
92 |
+
"team_id_away" TEXT, -- Away team identifier
|
93 |
+
"team_abbreviation_away" TEXT, -- Away team abbreviation
|
94 |
+
"pts_paint_away" INTEGER, -- Points in the paint by the away team
|
95 |
+
"pts_2nd_chance_away" INTEGER, -- Second chance points by the away team
|
96 |
+
"pts_fb_away" INTEGER, -- Fast break points by the away team
|
97 |
+
"largest_lead_away" INTEGER,-- Largest lead by the away team
|
98 |
+
"team_turnovers_away" INTEGER, -- Away team turnovers
|
99 |
+
"total_turnovers_away" INTEGER, -- Total turnovers by the away team
|
100 |
+
"team_rebounds_away" INTEGER, -- Away team rebounds
|
101 |
+
"pts_off_to_away" INTEGER -- Points off turnovers by the away team
|
102 |
+
);
|
103 |
+
'''
|
104 |
+
|
105 |
+
team_name_document = '''Team Name Information
|
106 |
+
In plaintext user questions, only the full team names will be used, but in the queries you may use either full names or abbreviations.
|
107 |
+
Full names are used with the game table, while abbreviations should be used with the other_stats table.
|
108 |
+
Team names and abbreviations (separated by |):
|
109 |
+
Atlanta Hawks|ATL, Boston Celtics|BOS, Cleveland Cavaliers|CLE, New Orleans Pelicans|NOP,
|
110 |
+
Chicago Bulls|CHI, Dallas Mavericks|DAL, Denver Nuggets|DEN, Golden State Warriors|GSW,
|
111 |
+
Houston Rockets|HOU, Los Angeles Clippers|LAC, Los Angeles Lakers|LAL, Miami Heat|MIA,
|
112 |
+
Milwaukee Bucks|MIL, Minnesota Timberwolves|MIN, Brooklyn Nets|BKN, New York Knicks|NYK,
|
113 |
+
Orlando Magic|ORL, Indiana Pacers|IND, Philadelphia 76ers|PHI, Phoenix Suns|PHX,
|
114 |
+
Portland Trail Blazers|POR, Sacramento Kings|SAC, San Antonio Spurs|SAS,
|
115 |
+
Oklahoma City Thunder|OKC, Toronto Raptors|TOR, Utah Jazz|UTA, Memphis Grizzlies|MEM,
|
116 |
+
Washington Wizards|WAS, Detroit Pistons|DET, Charlotte Hornets|CHA
|
117 |
+
'''
|
118 |
+
|
119 |
+
def retrieve_doc(has_team_schema, has_game_schema, has_other_stats_schema, has_team_names = True):
|
120 |
+
documents = []
|
121 |
+
# Now scores should be a 1D tensor with length equal to available_docs
|
122 |
+
if has_team_schema:
|
123 |
+
documents.append(team_table_document)
|
124 |
+
if has_game_schema:
|
125 |
+
documents.append(game_table_document)
|
126 |
+
if has_other_stats_schema:
|
127 |
+
documents.append(other_stats_table_document)
|
128 |
+
if has_team_names:
|
129 |
+
documents.append(team_name_document)
|
130 |
+
|
131 |
+
return documents
|
src/rag/team_documents.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
team_name_document = '''Team Name Information
|
2 |
+
In plaintext user questions, only the full team names will be used, but in the queries you may use either full names or abbreviations.
|
3 |
+
Full names are used with the game table, while abbreviations should be used with the other_stats table.
|
4 |
+
Team names and abbreviations (separated by |):
|
5 |
+
Atlanta Hawks|ATL, Boston Celtics|BOS, Cleveland Cavaliers|CLE, New Orleans Pelicans|NOP,
|
6 |
+
Chicago Bulls|CHI, Dallas Mavericks|DAL, Denver Nuggets|DEN, Golden State Warriors|GSW,
|
7 |
+
Houston Rockets|HOU, Los Angeles Clippers|LAC, Los Angeles Lakers|LAL, Miami Heat|MIA,
|
8 |
+
Milwaukee Bucks|MIL, Minnesota Timberwolves|MIN, Brooklyn Nets|BKN, New York Knicks|NYK,
|
9 |
+
Orlando Magic|ORL, Indiana Pacers|IND, Philadelphia 76ers|PHI, Phoenix Suns|PHX,
|
10 |
+
Portland Trail Blazers|POR, Sacramento Kings|SAC, San Antonio Spurs|SAS,
|
11 |
+
Oklahoma City Thunder|OKC, Toronto Raptors|TOR, Utah Jazz|UTA, Memphis Grizzlies|MEM,
|
12 |
+
Washington Wizards|WAS, Detroit Pistons|DET, Charlotte Hornets|CHA
|
13 |
+
'''
|
test_rag_2.ipynb
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "9ba5b9ac",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Notebook to evaluate RAG performance"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "afeb236f",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import pandas as pd\n",
|
19 |
+
"import warnings\n",
|
20 |
+
"import torch\n",
|
21 |
+
"import time\n",
|
22 |
+
"import math\n",
|
23 |
+
"import sqlite3 as sql\n",
|
24 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
25 |
+
"from huggingface_hub import snapshot_download\n",
|
26 |
+
"import sys\n",
|
27 |
+
"import os"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "markdown",
|
32 |
+
"id": "b7c75665",
|
33 |
+
"metadata": {},
|
34 |
+
"source": [
|
35 |
+
"## Create RAG document store"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
+
"id": "0e202df8",
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"is_google_colab=False"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
+
"id": "cc6c4ccd",
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"current_path = \"./\"\n",
|
56 |
+
"\n",
|
57 |
+
"def get_path(rel_path):\n",
|
58 |
+
" return os.path.join(current_path, rel_path)\n",
|
59 |
+
"\n",
|
60 |
+
"if is_google_colab:\n",
|
61 |
+
" hugging_face_path = snapshot_download(\n",
|
62 |
+
" repo_id=\"USC-Applied-NLP-Group/SQL-Generation\",\n",
|
63 |
+
" repo_type=\"model\", \n",
|
64 |
+
" allow_patterns=[\"src/*\", \"train-data/*\", \"deepseek-coder-1.3b-instruct/*\", \"nba-data/*\"], \n",
|
65 |
+
" )\n",
|
66 |
+
" sys.path.append(hugging_face_path)\n",
|
67 |
+
" current_path = hugging_face_path"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": null,
|
73 |
+
"id": "d589714b",
|
74 |
+
"metadata": {},
|
75 |
+
"outputs": [
|
76 |
+
{
|
77 |
+
"name": "stderr",
|
78 |
+
"output_type": "stream",
|
79 |
+
"text": [
|
80 |
+
"/opt/anaconda3/envs/CSCI544/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
81 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"name": "stdout",
|
86 |
+
"output_type": "stream",
|
87 |
+
"text": [
|
88 |
+
"Total dataset examples: 1044\n",
|
89 |
+
"\n",
|
90 |
+
"\n"
|
91 |
+
]
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"source": [
|
95 |
+
"\n",
|
96 |
+
"\n",
|
97 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
98 |
+
"\n",
|
99 |
+
"# Establish a database connection once (adjust the DB path as needed)\n",
|
100 |
+
"connection = sql.connect(get_path('nba-data/nba.sqlite'))\n",
|
101 |
+
"cursor = connection.cursor()\n",
|
102 |
+
"\n",
|
103 |
+
"# ------------------------------\n",
|
104 |
+
"# Load dataset and print summary\n",
|
105 |
+
"# ------------------------------\n",
|
106 |
+
"df = pd.read_csv(get_path(\"train-data/expanded_ql_train.tsv\"), sep='\\t')\n",
|
107 |
+
"print(\"Total dataset examples: \" + str(len(df)))\n",
|
108 |
+
"print(\"\\n\")\n",
|
109 |
+
"\n",
|
110 |
+
"# ------------------------------\n",
|
111 |
+
"# Load tokenizer and model\n",
|
112 |
+
"# ------------------------------\n",
|
113 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
114 |
+
"tokenizer = AutoTokenizer.from_pretrained(get_path(\"deepseek-coder-1.3b-instruct\"))\n",
|
115 |
+
"model = AutoModelForCausalLM.from_pretrained(get_path(\n",
|
116 |
+
" \"deepseek-coder-1.3b-instruct\"),\n",
|
117 |
+
" torch_dtype=torch.bfloat16,\n",
|
118 |
+
" device_map=device\n",
|
119 |
+
")\n",
|
120 |
+
"model.generation_config.pad_token_id = tokenizer.pad_token_id\n",
|
121 |
+
"\n",
|
122 |
+
"\n"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "markdown",
|
127 |
+
"id": "499d2745",
|
128 |
+
"metadata": {},
|
129 |
+
"source": [
|
130 |
+
"## Define compare result function for evaluation process"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": 2,
|
136 |
+
"id": "268561cd",
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [],
|
139 |
+
"source": [
|
140 |
+
"from src.evaluation.compare_result import compare_result\n",
|
141 |
+
"from src.rag.table_retriever import retrieve_doc"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "markdown",
|
146 |
+
"id": "e7393ccb",
|
147 |
+
"metadata": {},
|
148 |
+
"source": [
|
149 |
+
"## Create evaluation loop for RAG model"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": null,
|
155 |
+
"id": "500f003b",
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [],
|
158 |
+
"source": [
|
159 |
+
"# ------------------------------\n",
|
160 |
+
"# Function to evaluate the model on a given dataset\n",
|
161 |
+
"# ------------------------------\n",
|
162 |
+
"def run_evaluation(nba_df, title):\n",
|
163 |
+
" counter = 0\n",
|
164 |
+
" num_valid = 0\n",
|
165 |
+
" num_sql_matched = 0\n",
|
166 |
+
" num_result_matched = 0\n",
|
167 |
+
" for index, row in nba_df.iterrows():\n",
|
168 |
+
" # Retrieve relevant schema chunks via RAG\n",
|
169 |
+
" relevant_schemas = retrieve_doc(row['team_flag'], row['game_flag'], row['other_stats_flag'], False)\n",
|
170 |
+
" schema_block = \"\\n\\n\".join(relevant_schemas)\n",
|
171 |
+
" \n",
|
172 |
+
" #print(row[\"natural_query\"])\n",
|
173 |
+
" #print(row[\"sql_query\"])\n",
|
174 |
+
" #print(schema_block)\n",
|
175 |
+
" #return\n",
|
176 |
+
" # Build the prompt with instructions, schema, examples, and current request.\n",
|
177 |
+
" input_text = f\"\"\"\n",
|
178 |
+
"You are an AI assistant that generates SQLite queries for an NBA database based on user questions.\n",
|
179 |
+
"\n",
|
180 |
+
"### Relevant Schema:\n",
|
181 |
+
"{schema_block}\n",
|
182 |
+
"\n",
|
183 |
+
"### Instructions:\n",
|
184 |
+
"- Generate a valid SQLite query to retrieve relevant data from the database.\n",
|
185 |
+
"- Use column names correctly based on the provided schema.\n",
|
186 |
+
"- Output only the SQLite query as plain text.\n",
|
187 |
+
"\n",
|
188 |
+
"### Team Name Information:\n",
|
189 |
+
"In the plaintext user questions, only the full team names will be used, but in the queries you may use the full team names or the abbreviations. \n",
|
190 |
+
"The full team names can be used with the game table, while the abbreviations should be used with the other_stats table.\n",
|
191 |
+
"Notice they are separated by the | character in the following list:\n",
|
192 |
+
"\n",
|
193 |
+
"Atlanta Hawks|ATL\n",
|
194 |
+
"Boston Celtics|BOS\n",
|
195 |
+
"Cleveland Cavaliers|CLE\n",
|
196 |
+
"New Orleans Pelicans|NOP\n",
|
197 |
+
"Chicago Bulls|CHI\n",
|
198 |
+
"Dallas Mavericks|DAL\n",
|
199 |
+
"Denver Nuggets|DEN\n",
|
200 |
+
"Golden State Warriors|GSW\n",
|
201 |
+
"Houston Rockets|HOU\n",
|
202 |
+
"Los Angeles Clippers|LAC\n",
|
203 |
+
"Los Angeles Lakers|LAL\n",
|
204 |
+
"Miami Heat|MIA\n",
|
205 |
+
"Milwaukee Bucks|MIL\n",
|
206 |
+
"Minnesota Timberwolves|MIN\n",
|
207 |
+
"Brooklyn Nets|BKN\n",
|
208 |
+
"New York Knicks|NYK\n",
|
209 |
+
"Orlando Magic|ORL\n",
|
210 |
+
"Indiana Pacers|IND\n",
|
211 |
+
"Philadelphia 76ers|PHI\n",
|
212 |
+
"Phoenix Suns|PHX\n",
|
213 |
+
"Portland Trail Blazers|POR\n",
|
214 |
+
"Sacramento Kings|SAC\n",
|
215 |
+
"San Antonio Spurs|SAS\n",
|
216 |
+
"Oklahoma City Thunder|OKC\n",
|
217 |
+
"Toronto Raptors|TOR\n",
|
218 |
+
"Utah Jazz|UTA\n",
|
219 |
+
"Memphis Grizzlies|MEM\n",
|
220 |
+
"Washington Wizards|WAS\n",
|
221 |
+
"Detroit Pistons|DET\n",
|
222 |
+
"Charlotte Hornets|CHA\n",
|
223 |
+
"\n",
|
224 |
+
"### Query Guidelines:\n",
|
225 |
+
"Use team_name_home and team_name_away to match teams to the game table. Use team_abbreviation_home and team_abbreviation away to match teams to the other_stats table.\n",
|
226 |
+
"\n",
|
227 |
+
"To filter by season, use season_id = '2YYYY'.\n",
|
228 |
+
"\n",
|
229 |
+
"Example: To get statistics from 2005, use a statement like: season_id = '22005'. To get statistics from 1972, use a statement like: season_id = \"21972\". To get statistics from 2015, use a statement like: season_id = \"22015\".\n",
|
230 |
+
"\n",
|
231 |
+
"Ensure queries return relevant columns and avoid unnecessary joins.\n",
|
232 |
+
"\n",
|
233 |
+
"### Example User Requests and SQLite Queries\n",
|
234 |
+
"Request:\n",
|
235 |
+
"\"What is the most points the Los Angeles Lakers have ever scored at home?\"\n",
|
236 |
+
"SQLite:\n",
|
237 |
+
"SELECT MAX(pts_home)\n",
|
238 |
+
"FROM game\n",
|
239 |
+
"WHERE team_name_home = 'Los Angeles Lakers';\n",
|
240 |
+
"\n",
|
241 |
+
"Request:\n",
|
242 |
+
"\"Which teams are located in the state of California?\"\n",
|
243 |
+
"SQLite:\n",
|
244 |
+
"SELECT full_name FROM team WHERE state = 'California';\n",
|
245 |
+
"\n",
|
246 |
+
"Request:\n",
|
247 |
+
"\"Which team had the highest number of team turnovers in an away game?\"\n",
|
248 |
+
"SQLite:\n",
|
249 |
+
"SELECT team_abbreviation_away FROM other_stats ORDER BY team_turnovers_away DESC LIMIT 1;\n",
|
250 |
+
"\n",
|
251 |
+
"Request:\n",
|
252 |
+
"\"Which teams were founded before 1979?\"\n",
|
253 |
+
"SQLite:\n",
|
254 |
+
"SELECT full_name FROM team WHERE year_founded < 1979;\n",
|
255 |
+
"\n",
|
256 |
+
"Request:\n",
|
257 |
+
"\"Find the Boston Celtics largest home victory margin in the 2008 season.\"\n",
|
258 |
+
"SQLite:\n",
|
259 |
+
"SELECT MAX(pts_home - pts_away) AS biggest_win\n",
|
260 |
+
"FROM game\n",
|
261 |
+
"WHERE team_name_home = 'Boston Celtics' AND season_id = '22008';\n",
|
262 |
+
"\n",
|
263 |
+
"Generate only the SQLite query prefaced by SQLite: and no other text. Now generate an SQLite query for the following user request.\n",
|
264 |
+
"Request: {row[\"natural_query\"]}\n",
|
265 |
+
"\"\"\"\n",
|
266 |
+
" messages = [{'role': 'user', 'content': input_text}]\n",
|
267 |
+
" prompt_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)\n",
|
268 |
+
" inputs = tokenizer(prompt_text, return_tensors=\"pt\", padding=True).to(model.device)\n",
|
269 |
+
" \n",
|
270 |
+
" outputs = model.generate(\n",
|
271 |
+
" **inputs,\n",
|
272 |
+
" max_new_tokens=512,\n",
|
273 |
+
" do_sample=False,\n",
|
274 |
+
" top_k=50,\n",
|
275 |
+
" top_p=0.95,\n",
|
276 |
+
" num_return_sequences=1,\n",
|
277 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
278 |
+
" pad_token_id=tokenizer.eos_token_id\n",
|
279 |
+
" )\n",
|
280 |
+
" \n",
|
281 |
+
" # Decode the model output.\n",
|
282 |
+
" generated_query = tokenizer.decode(outputs[0][len(inputs[\"input_ids\"][0]):], skip_special_tokens=True)\n",
|
283 |
+
" \n",
|
284 |
+
" # Clean generated query: remove any prefix and truncate after first semicolon.\n",
|
285 |
+
" if generated_query.startswith(\"SQLite:\"):\n",
|
286 |
+
" clean_query = generated_query[len(\"SQLite:\"):].strip()\n",
|
287 |
+
" elif generated_query.startswith(\"SQL:\"):\n",
|
288 |
+
" clean_query = generated_query[len(\"SQL:\"):].strip()\n",
|
289 |
+
" else:\n",
|
290 |
+
" clean_query = generated_query.strip()\n",
|
291 |
+
" \n",
|
292 |
+
" semicolon_idx = clean_query.find(\";\")\n",
|
293 |
+
" if semicolon_idx != -1:\n",
|
294 |
+
" clean_query = clean_query[:semicolon_idx+1]\n",
|
295 |
+
" \n",
|
296 |
+
" # Execute the cleaned query on the SQLite DB to obtain the actual result.\n",
|
297 |
+
" \"\"\"\n",
|
298 |
+
" try:\n",
|
299 |
+
" cursor.execute(clean_query)\n",
|
300 |
+
" rows = cursor.fetchall()\n",
|
301 |
+
" if rows and isinstance(rows[0], (tuple, list)) and len(rows[0]) > 0:\n",
|
302 |
+
" actual_result = rows[0][0]\n",
|
303 |
+
" elif rows:\n",
|
304 |
+
" actual_result = rows[0]\n",
|
305 |
+
" else:\n",
|
306 |
+
" actual_result = \"\"\n",
|
307 |
+
" except Exception as e:\n",
|
308 |
+
" actual_result = \"Error executing query: \" + str(e)\n",
|
309 |
+
" \"\"\"\n",
|
310 |
+
" \n",
|
311 |
+
" # Compare the ground truth query and expected result to the generated query and actual result.\n",
|
312 |
+
" valid, sql_matched, result_matched = compare_result(cursor, row[\"sql_query\"], row[\"result\"], generated_query)\n",
|
313 |
+
" \"\"\"\n",
|
314 |
+
" print(\"=============================================\")\n",
|
315 |
+
" print(f\"Overall Valid: {valid}\")\n",
|
316 |
+
" print(f\"SQL Query Matched: {sql_matched}\")\n",
|
317 |
+
" print(f\"Result Matched: {result_matched}\")\n",
|
318 |
+
" print(\"=============================================\\n\")\n",
|
319 |
+
" \n",
|
320 |
+
" # Print debug output.\n",
|
321 |
+
" print(\"----- Ground Truth SQL Query -----\")\n",
|
322 |
+
" print(row[\"sql_query\"])\n",
|
323 |
+
" print(\"------------------------------------\\n\")\n",
|
324 |
+
" print(\"----- Model Generated SQL Query -----\")\n",
|
325 |
+
" print(generated_query)\n",
|
326 |
+
" print(\"---------------------------------------\\n\")\n",
|
327 |
+
" \n",
|
328 |
+
" print(\"----- Expected Result -----\")\n",
|
329 |
+
" print(row[\"result\"])\n",
|
330 |
+
" print(\"----- Actual DB Result -----\")\n",
|
331 |
+
" print(actual_result)\n",
|
332 |
+
" print(\"-------------------------------------------------\\n\")\n",
|
333 |
+
" \"\"\"\n",
|
334 |
+
" if valid:\n",
|
335 |
+
" num_valid += 1\n",
|
336 |
+
" if sql_matched:\n",
|
337 |
+
" num_sql_matched += 1\n",
|
338 |
+
" if result_matched:\n",
|
339 |
+
" num_result_matched += 1\n",
|
340 |
+
" \n",
|
341 |
+
" counter += 1\n",
|
342 |
+
"\n",
|
343 |
+
" # CONTROL ITERS\n",
|
344 |
+
" # if counter == 2:\n",
|
345 |
+
" # break\n",
|
346 |
+
" \n",
|
347 |
+
" if counter % 50 == 0:\n",
|
348 |
+
" print(\"Completed \" + str(counter))\n",
|
349 |
+
" \n",
|
350 |
+
" print(\"\\n\" + title + \" results:\")\n",
|
351 |
+
" print(\"Percent valid: \" + str(num_valid / len(nba_df)))\n",
|
352 |
+
" print(\"Percent SQLite matched: \" + str(num_sql_matched / len(nba_df)))\n",
|
353 |
+
" print(\"Percent result matched: \" + str(num_result_matched / len(nba_df)))\n",
|
354 |
+
" print(\"Dataset length: \" + str(len(nba_df)))\n",
|
355 |
+
" print(\"-------------------\")\n",
|
356 |
+
" print(\"Num queries tested: \", counter)\n",
|
357 |
+
" print(\"Num correct queries: \", num_result_matched)\n",
|
358 |
+
" print(\"Acc: \", (num_result_matched / counter)*100)\n",
|
359 |
+
" print(\"-------------------\")\n",
|
360 |
+
" "
|
361 |
+
]
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"cell_type": "markdown",
|
365 |
+
"id": "9c23d082",
|
366 |
+
"metadata": {},
|
367 |
+
"source": [
|
368 |
+
"## Run evaluation using RAG"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"execution_count": 7,
|
374 |
+
"id": "6eb6a1c1",
|
375 |
+
"metadata": {},
|
376 |
+
"outputs": [
|
377 |
+
{
|
378 |
+
"name": "stdout",
|
379 |
+
"output_type": "stream",
|
380 |
+
"text": [
|
381 |
+
"Completed 50\n",
|
382 |
+
"Completed 100\n",
|
383 |
+
"Completed 150\n",
|
384 |
+
"Completed 200\n",
|
385 |
+
"Completed 250\n",
|
386 |
+
"Completed 300\n",
|
387 |
+
"Completed 350\n",
|
388 |
+
"Completed 400\n",
|
389 |
+
"Completed 450\n",
|
390 |
+
"Completed 500\n",
|
391 |
+
"Completed 550\n",
|
392 |
+
"Completed 600\n",
|
393 |
+
"Completed 650\n",
|
394 |
+
"Completed 700\n",
|
395 |
+
"Completed 750\n",
|
396 |
+
"Completed 800\n",
|
397 |
+
"Completed 850\n",
|
398 |
+
"Completed 900\n",
|
399 |
+
"Completed 950\n",
|
400 |
+
"Completed 1000\n",
|
401 |
+
"\n",
|
402 |
+
"All training data results:\n",
|
403 |
+
"Percent valid: 0.7988505747126436\n",
|
404 |
+
"Percent SQLite matched: 0.13409961685823754\n",
|
405 |
+
"Percent result matched: 0.3850574712643678\n",
|
406 |
+
"Dataset length: 1044\n",
|
407 |
+
"-------------------\n",
|
408 |
+
"Num queries tested: 1044\n",
|
409 |
+
"Num correct queries: 402\n",
|
410 |
+
"Acc: 38.50574712643678\n",
|
411 |
+
"-------------------\n",
|
412 |
+
"Dataset length: 1044\n"
|
413 |
+
]
|
414 |
+
}
|
415 |
+
],
|
416 |
+
"source": [
|
417 |
+
"# ------------------------------\n",
|
418 |
+
"# Run evaluation on the full training dataset\n",
|
419 |
+
"# ------------------------------\n",
|
420 |
+
"run_evaluation(df, \"All training data\")\n",
|
421 |
+
"print(\"Dataset length: \" + str(len(df)))"
|
422 |
+
]
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"cell_type": "markdown",
|
426 |
+
"id": "f298cfa1",
|
427 |
+
"metadata": {},
|
428 |
+
"source": [
|
429 |
+
"## Run RAG evaluation on small query dataset"
|
430 |
+
]
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"cell_type": "code",
|
434 |
+
"execution_count": null,
|
435 |
+
"id": "121855db",
|
436 |
+
"metadata": {},
|
437 |
+
"outputs": [
|
438 |
+
{
|
439 |
+
"name": "stdout",
|
440 |
+
"output_type": "stream",
|
441 |
+
"text": [
|
442 |
+
"Completed 50\n",
|
443 |
+
"Completed 100\n",
|
444 |
+
"Completed 150\n",
|
445 |
+
"Completed 200\n",
|
446 |
+
"\n",
|
447 |
+
"Less than 90 results:\n",
|
448 |
+
"Percent valid: 0.8979591836734694\n",
|
449 |
+
"Percent SQLite matched: 0.37551020408163266\n",
|
450 |
+
"Percent result matched: 0.7061224489795919\n",
|
451 |
+
"Dataset length: 245\n",
|
452 |
+
"-------------------\n",
|
453 |
+
"Num queries tested: 245\n",
|
454 |
+
"Num correct queries: 173\n",
|
455 |
+
"Acc: 70.61224489795919\n",
|
456 |
+
"-------------------\n",
|
457 |
+
"Dataset length: 245\n"
|
458 |
+
]
|
459 |
+
}
|
460 |
+
],
|
461 |
+
"source": [
|
462 |
+
"less_than_90_df = pd.read_csv(get_path(\"train-data/less_than_90.tsv\"), sep='\\t')\n",
|
463 |
+
"run_evaluation(less_than_90_df, \"Less than 90\")\n",
|
464 |
+
"print(\"Dataset length: \" + str(len(less_than_90_df)))"
|
465 |
+
]
|
466 |
+
}
|
467 |
+
],
|
468 |
+
"metadata": {
|
469 |
+
"kernelspec": {
|
470 |
+
"display_name": "CSCI544",
|
471 |
+
"language": "python",
|
472 |
+
"name": "python3"
|
473 |
+
},
|
474 |
+
"language_info": {
|
475 |
+
"codemirror_mode": {
|
476 |
+
"name": "ipython",
|
477 |
+
"version": 3
|
478 |
+
},
|
479 |
+
"file_extension": ".py",
|
480 |
+
"mimetype": "text/x-python",
|
481 |
+
"name": "python",
|
482 |
+
"nbconvert_exporter": "python",
|
483 |
+
"pygments_lexer": "ipython3",
|
484 |
+
"version": "3.11.11"
|
485 |
+
}
|
486 |
+
},
|
487 |
+
"nbformat": 4,
|
488 |
+
"nbformat_minor": 5
|
489 |
+
}
|
train-data/expanded_sql_train.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|