ran full testing with updated prompt, improves team and other_stats performance, slight drop on game performance
Browse files- test_pretrained.ipynb +52 -103
test_pretrained.ipynb
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
},
|
17 |
{
|
18 |
"cell_type": "code",
|
19 |
-
"execution_count":
|
20 |
"metadata": {},
|
21 |
"outputs": [
|
22 |
{
|
@@ -26,9 +26,9 @@
|
|
26 |
"Total dataset examples: 1044\n",
|
27 |
"\n",
|
28 |
"\n",
|
29 |
-
"
|
30 |
-
"SELECT
|
31 |
-
"
|
32 |
]
|
33 |
}
|
34 |
],
|
@@ -58,7 +58,7 @@
|
|
58 |
},
|
59 |
{
|
60 |
"cell_type": "code",
|
61 |
-
"execution_count":
|
62 |
"metadata": {},
|
63 |
"outputs": [],
|
64 |
"source": [
|
@@ -83,7 +83,7 @@
|
|
83 |
},
|
84 |
{
|
85 |
"cell_type": "code",
|
86 |
-
"execution_count":
|
87 |
"metadata": {},
|
88 |
"outputs": [],
|
89 |
"source": [
|
@@ -236,21 +236,8 @@
|
|
236 |
"\n",
|
237 |
"Example: To get statistics from 2005, use a statement like: season_id = '22005'. To get statistics from 1972, use a statement like: season_id = \"21972\". To get statistics from 2015, use a statement like: season_id = \"22015\".\n",
|
238 |
"\n",
|
239 |
-
"The game_id column can be used to join the game and other_stats tables.\n",
|
240 |
-
"\n",
|
241 |
"Ensure queries return relevant columns and avoid unnecessary joins.\n",
|
242 |
"\n",
|
243 |
-
"When obtaining certain statistics by team from the game table, use the team_name_home and team_name_away columns. \n",
|
244 |
-
"For example, to obtain home game data for the Washington Wizards from the game table use a statement like: team_name_home = 'Washington Wizards'\n",
|
245 |
-
"To obtain away game data from the Los Angeles Lakers from the game table use a statement like: team_name_away = 'Los Angeles Lakers'\n",
|
246 |
-
"To obtain general game data where home or away is not specified for the Chicago Bulls from the game table, use a statement like: (team_name_home = 'Chicago Bulls' OR team_name_away = 'Chicago Bulls')\n",
|
247 |
-
"\n",
|
248 |
-
"When obtaining certain statistics by team from the other_stats table, use the team_abbreviation_home and team_abbreviation away columns.\n",
|
249 |
-
"For example, to obtain home statistics from the Charlotte Hornets from the other_stats table use a statement like: team_abbreviation_home = 'CHA'\n",
|
250 |
-
"To obtain away statistics from the Dallas Mavericks from the other_stats table, use a statement like: team_abbreviation_away = 'DAL'\n",
|
251 |
-
"To obtain general statistics from the other_stats table where home or away is not specified for the Detroit Pistons use a statement like: (team_abbreviation_home = 'DET' OR team_abbreviation_away = 'DET)\n",
|
252 |
-
"\n",
|
253 |
-
"\n",
|
254 |
"Example User Requests and SQLite Queries\n",
|
255 |
"Request:\n",
|
256 |
"\"What is the most points the Los Angeles Lakers have ever scored at home?\"\n",
|
@@ -265,62 +252,22 @@
|
|
265 |
"SELECT full_name FROM team WHERE state = 'California';\n",
|
266 |
"\n",
|
267 |
"Request:\n",
|
268 |
-
"\"How many total team rebounds did the Los Angeles Clippers have in away games where they scored over 15 fast break points?\"\n",
|
269 |
-
"SQLite:\n",
|
270 |
-
"SELECT SUM(os.team_rebounds_away) \n",
|
271 |
-
"FROM other_stats os \n",
|
272 |
-
"JOIN game g ON os.game_id = g.game_id \n",
|
273 |
-
"WHERE g.team_abbreviation_away = 'LAC' AND os.pts_fb_away > 15;\n",
|
274 |
-
"\n",
|
275 |
-
"Request:\n",
|
276 |
-
"\"How many points did the Miami Heat score on January 10, 2010?\"\n",
|
277 |
-
"SQLite:\n",
|
278 |
-
"SELECT team_name_home, pts_home, team_name_away, pts_away \n",
|
279 |
-
"FROM game \n",
|
280 |
-
"WHERE DATE(game_date) = '2010-01-10' \n",
|
281 |
-
"AND (team_name_home = 'Miami Heat' OR team_name_away = 'Miami Heat');\n",
|
282 |
-
"\n",
|
283 |
-
"Request:\n",
|
284 |
"\"Which team had the highest number of team turnovers in an away game?\"\n",
|
285 |
"SQLite:\n",
|
286 |
"SELECT team_abbreviation_away FROM other_stats ORDER BY team_turnovers_away DESC LIMIT 1;\n",
|
287 |
"\n",
|
288 |
"Request:\n",
|
289 |
-
"\"Which team won the most home games in the 2000 season?\"\n",
|
290 |
-
"SQLite:\n",
|
291 |
-
"SELECT team_name_home, COUNT(*) AS wins\n",
|
292 |
-
"FROM game\n",
|
293 |
-
"WHERE wl_home = 'W' AND season_id = '22000'\n",
|
294 |
-
"GROUP BY team_name_home\n",
|
295 |
-
"ORDER BY wins DESC\n",
|
296 |
-
"LIMIT 1;\n",
|
297 |
-
"\n",
|
298 |
-
"Request:\n",
|
299 |
"\"Which teams were founded before 1979?\"\n",
|
300 |
"SQLite:\n",
|
301 |
"SELECT full_name FROM team WHERE year_founded < 1979;\n",
|
302 |
"\n",
|
303 |
"Request:\n",
|
304 |
-
"\"Which game had the most lead changes in the 2020 season?\"\n",
|
305 |
-
"SQLite:\n",
|
306 |
-
"SELECT game_id, lead_changes \n",
|
307 |
-
"FROM other_stats \n",
|
308 |
-
"WHERE game_id IN \n",
|
309 |
-
"(SELECT game_id FROM game WHERE season_id = '22020')\n",
|
310 |
-
"ORDER BY lead_changes DESC LIMIT 1;\n",
|
311 |
-
"\n",
|
312 |
-
"Request:\n",
|
313 |
"\"Find the Boston Celtics largest home victory margin in the 2008 season.\"\n",
|
314 |
"SQLite:\n",
|
315 |
"SELECT MAX(pts_home - pts_away) AS biggest_win\n",
|
316 |
"FROM game\n",
|
317 |
"WHERE team_name_home = 'Boston Celtics' AND season_id = '22008';\n",
|
318 |
"\n",
|
319 |
-
"Request:\n",
|
320 |
-
"\"How many fast break points did the Atlanta Hawks score at home?\"\n",
|
321 |
-
"SQLite:\n",
|
322 |
-
"SELECT SUM(pts_fb_home) as total_fb_points FROM other_stats WHERE team_abbreviation_home = 'ATL';\n",
|
323 |
-
"\n",
|
324 |
"Generate only the SQLite query prefaced by SQLite: and no other text, do not output an explanation of the query. Now generate an SQLite query for the following user request. Request:\n",
|
325 |
"\"\"\""
|
326 |
]
|
@@ -334,7 +281,7 @@
|
|
334 |
},
|
335 |
{
|
336 |
"cell_type": "code",
|
337 |
-
"execution_count":
|
338 |
"metadata": {},
|
339 |
"outputs": [
|
340 |
{
|
@@ -342,9 +289,9 @@
|
|
342 |
"output_type": "stream",
|
343 |
"text": [
|
344 |
"SQLite:\n",
|
345 |
-
"SELECT
|
346 |
-
"FROM
|
347 |
-
"WHERE
|
348 |
"\n"
|
349 |
]
|
350 |
}
|
@@ -369,15 +316,14 @@
|
|
369 |
},
|
370 |
{
|
371 |
"cell_type": "code",
|
372 |
-
"execution_count":
|
373 |
"metadata": {},
|
374 |
"outputs": [
|
375 |
{
|
376 |
"name": "stdout",
|
377 |
"output_type": "stream",
|
378 |
"text": [
|
379 |
-
"cleaned\n"
|
380 |
-
"(43.0,)\n"
|
381 |
]
|
382 |
}
|
383 |
],
|
@@ -415,24 +361,24 @@
|
|
415 |
},
|
416 |
{
|
417 |
"cell_type": "code",
|
418 |
-
"execution_count":
|
419 |
"metadata": {},
|
420 |
"outputs": [
|
421 |
{
|
422 |
"name": "stdout",
|
423 |
"output_type": "stream",
|
424 |
"text": [
|
425 |
-
"
|
426 |
-
"SELECT
|
427 |
-
"
|
428 |
"SQLite:\n",
|
429 |
-
"SELECT
|
430 |
-
"FROM
|
431 |
-
"WHERE team_name_home = '
|
432 |
"\n",
|
433 |
-
"Statement valid?
|
434 |
"SQLite matched? False\n",
|
435 |
-
"Result matched?
|
436 |
]
|
437 |
}
|
438 |
],
|
@@ -561,7 +507,7 @@
|
|
561 |
},
|
562 |
{
|
563 |
"cell_type": "code",
|
564 |
-
"execution_count":
|
565 |
"metadata": {},
|
566 |
"outputs": [],
|
567 |
"source": [
|
@@ -609,7 +555,7 @@
|
|
609 |
},
|
610 |
{
|
611 |
"cell_type": "code",
|
612 |
-
"execution_count":
|
613 |
"metadata": {},
|
614 |
"outputs": [
|
615 |
{
|
@@ -617,18 +563,21 @@
|
|
617 |
"output_type": "stream",
|
618 |
"text": [
|
619 |
"Completed 50\n",
|
|
|
|
|
|
|
620 |
"\n",
|
621 |
"Less than 90 results:\n",
|
622 |
-
"Percent valid: 0.
|
623 |
-
"Percent SQLite matched: 0.
|
624 |
-
"Percent result matched: 0.
|
625 |
"Dataset length: 245\n"
|
626 |
]
|
627 |
}
|
628 |
],
|
629 |
"source": [
|
630 |
"less_than_90_df = pd.read_csv(\"./train-data/less_than_90.tsv\", sep='\\t')\n",
|
631 |
-
"run_evaluation(less_than_90_df
|
632 |
"print(\"Dataset length: \" + str(len(less_than_90_df)))"
|
633 |
]
|
634 |
},
|
@@ -641,7 +590,7 @@
|
|
641 |
},
|
642 |
{
|
643 |
"cell_type": "code",
|
644 |
-
"execution_count":
|
645 |
"metadata": {},
|
646 |
"outputs": [
|
647 |
{
|
@@ -666,9 +615,9 @@
|
|
666 |
"Completed 800\n",
|
667 |
"\n",
|
668 |
"Queries from game results:\n",
|
669 |
-
"Percent valid: 0.
|
670 |
-
"Percent SQLite matched: 0.
|
671 |
-
"Percent result matched: 0.
|
672 |
"Dataset length: 838\n"
|
673 |
]
|
674 |
}
|
@@ -688,7 +637,7 @@
|
|
688 |
},
|
689 |
{
|
690 |
"cell_type": "code",
|
691 |
-
"execution_count":
|
692 |
"metadata": {},
|
693 |
"outputs": [
|
694 |
{
|
@@ -700,9 +649,9 @@
|
|
700 |
"Completed 150\n",
|
701 |
"\n",
|
702 |
"Queries from other stats results:\n",
|
703 |
-
"Percent valid: 0.
|
704 |
-
"Percent SQLite matched: 0.
|
705 |
-
"Percent result matched: 0.
|
706 |
"Dataset length: 154\n"
|
707 |
]
|
708 |
}
|
@@ -722,7 +671,7 @@
|
|
722 |
},
|
723 |
{
|
724 |
"cell_type": "code",
|
725 |
-
"execution_count":
|
726 |
"metadata": {},
|
727 |
"outputs": [
|
728 |
{
|
@@ -732,9 +681,9 @@
|
|
732 |
"Completed 50\n",
|
733 |
"\n",
|
734 |
"Queries from team results:\n",
|
735 |
-
"Percent valid: 0.
|
736 |
-
"Percent SQLite matched: 0.
|
737 |
-
"Percent result matched: 0.
|
738 |
"Dataset length: 52\n"
|
739 |
]
|
740 |
}
|
@@ -754,7 +703,7 @@
|
|
754 |
},
|
755 |
{
|
756 |
"cell_type": "code",
|
757 |
-
"execution_count":
|
758 |
"metadata": {},
|
759 |
"outputs": [
|
760 |
{
|
@@ -766,9 +715,9 @@
|
|
766 |
"Completed 150\n",
|
767 |
"\n",
|
768 |
"Queries with join results:\n",
|
769 |
-
"Percent valid: 0.
|
770 |
"Percent SQLite matched: 0.0\n",
|
771 |
-
"Percent result matched: 0.
|
772 |
"Dataset length: 185\n"
|
773 |
]
|
774 |
}
|
@@ -788,7 +737,7 @@
|
|
788 |
},
|
789 |
{
|
790 |
"cell_type": "code",
|
791 |
-
"execution_count":
|
792 |
"metadata": {},
|
793 |
"outputs": [
|
794 |
{
|
@@ -814,9 +763,9 @@
|
|
814 |
"Completed 850\n",
|
815 |
"\n",
|
816 |
"Queries without join results:\n",
|
817 |
-
"Percent valid: 0.
|
818 |
-
"Percent SQLite matched: 0.
|
819 |
-
"Percent result matched: 0.
|
820 |
"Dataset length: 859\n"
|
821 |
]
|
822 |
}
|
@@ -836,7 +785,7 @@
|
|
836 |
},
|
837 |
{
|
838 |
"cell_type": "code",
|
839 |
-
"execution_count":
|
840 |
"metadata": {},
|
841 |
"outputs": [
|
842 |
{
|
@@ -865,8 +814,8 @@
|
|
865 |
"Completed 1000\n",
|
866 |
"\n",
|
867 |
"All training data results:\n",
|
868 |
-
"Percent valid: 0.
|
869 |
-
"Percent SQLite matched: 0.
|
870 |
"Percent result matched: 0.35823754789272033\n",
|
871 |
"Dataset length: 1044\n"
|
872 |
]
|
|
|
16 |
},
|
17 |
{
|
18 |
"cell_type": "code",
|
19 |
+
"execution_count": 1,
|
20 |
"metadata": {},
|
21 |
"outputs": [
|
22 |
{
|
|
|
26 |
"Total dataset examples: 1044\n",
|
27 |
"\n",
|
28 |
"\n",
|
29 |
+
"Which team committed the fewest total turnovers in an away game that resulted in a win?\n",
|
30 |
+
"SELECT team_abbreviation_away FROM other_stats WHERE game_id IN (SELECT game_id FROM game WHERE wl_away = 'W') ORDER BY total_turnovers_away ASC LIMIT 1;\n",
|
31 |
+
"PHX\n"
|
32 |
]
|
33 |
}
|
34 |
],
|
|
|
58 |
},
|
59 |
{
|
60 |
"cell_type": "code",
|
61 |
+
"execution_count": 2,
|
62 |
"metadata": {},
|
63 |
"outputs": [],
|
64 |
"source": [
|
|
|
83 |
},
|
84 |
{
|
85 |
"cell_type": "code",
|
86 |
+
"execution_count": 3,
|
87 |
"metadata": {},
|
88 |
"outputs": [],
|
89 |
"source": [
|
|
|
236 |
"\n",
|
237 |
"Example: To get statistics from 2005, use a statement like: season_id = '22005'. To get statistics from 1972, use a statement like: season_id = \"21972\". To get statistics from 2015, use a statement like: season_id = \"22015\".\n",
|
238 |
"\n",
|
|
|
|
|
239 |
"Ensure queries return relevant columns and avoid unnecessary joins.\n",
|
240 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
"Example User Requests and SQLite Queries\n",
|
242 |
"Request:\n",
|
243 |
"\"What is the most points the Los Angeles Lakers have ever scored at home?\"\n",
|
|
|
252 |
"SELECT full_name FROM team WHERE state = 'California';\n",
|
253 |
"\n",
|
254 |
"Request:\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
"\"Which team had the highest number of team turnovers in an away game?\"\n",
|
256 |
"SQLite:\n",
|
257 |
"SELECT team_abbreviation_away FROM other_stats ORDER BY team_turnovers_away DESC LIMIT 1;\n",
|
258 |
"\n",
|
259 |
"Request:\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
"\"Which teams were founded before 1979?\"\n",
|
261 |
"SQLite:\n",
|
262 |
"SELECT full_name FROM team WHERE year_founded < 1979;\n",
|
263 |
"\n",
|
264 |
"Request:\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
"\"Find the Boston Celtics largest home victory margin in the 2008 season.\"\n",
|
266 |
"SQLite:\n",
|
267 |
"SELECT MAX(pts_home - pts_away) AS biggest_win\n",
|
268 |
"FROM game\n",
|
269 |
"WHERE team_name_home = 'Boston Celtics' AND season_id = '22008';\n",
|
270 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
271 |
"Generate only the SQLite query prefaced by SQLite: and no other text, do not output an explanation of the query. Now generate an SQLite query for the following user request. Request:\n",
|
272 |
"\"\"\""
|
273 |
]
|
|
|
281 |
},
|
282 |
{
|
283 |
"cell_type": "code",
|
284 |
+
"execution_count": 4,
|
285 |
"metadata": {},
|
286 |
"outputs": [
|
287 |
{
|
|
|
289 |
"output_type": "stream",
|
290 |
"text": [
|
291 |
"SQLite:\n",
|
292 |
+
"SELECT team_abbreviation_away \n",
|
293 |
+
"FROM other_stats \n",
|
294 |
+
"WHERE wl_away = 'W' AND total_turnovers_away < (SELECT MIN(total_turnovers_away) FROM other_stats WHERE wl_away = 'L');\n",
|
295 |
"\n"
|
296 |
]
|
297 |
}
|
|
|
316 |
},
|
317 |
{
|
318 |
"cell_type": "code",
|
319 |
+
"execution_count": 5,
|
320 |
"metadata": {},
|
321 |
"outputs": [
|
322 |
{
|
323 |
"name": "stdout",
|
324 |
"output_type": "stream",
|
325 |
"text": [
|
326 |
+
"cleaned\n"
|
|
|
327 |
]
|
328 |
}
|
329 |
],
|
|
|
361 |
},
|
362 |
{
|
363 |
"cell_type": "code",
|
364 |
+
"execution_count": 6,
|
365 |
"metadata": {},
|
366 |
"outputs": [
|
367 |
{
|
368 |
"name": "stdout",
|
369 |
"output_type": "stream",
|
370 |
"text": [
|
371 |
+
"What is the largest lead the Minnesota Timberwolves had at home?\n",
|
372 |
+
"SELECT MAX(largest_lead_home) as max_lead FROM other_stats WHERE team_abbreviation_home = 'MIN';\n",
|
373 |
+
"48.0\n",
|
374 |
"SQLite:\n",
|
375 |
+
"SELECT MAX(largest_lead_home) \n",
|
376 |
+
"FROM other_stats \n",
|
377 |
+
"WHERE team_name_home = 'Minnesota Timberwolves';\n",
|
378 |
"\n",
|
379 |
+
"Statement valid? False\n",
|
380 |
"SQLite matched? False\n",
|
381 |
+
"Result matched? False\n"
|
382 |
]
|
383 |
}
|
384 |
],
|
|
|
507 |
},
|
508 |
{
|
509 |
"cell_type": "code",
|
510 |
+
"execution_count": 7,
|
511 |
"metadata": {},
|
512 |
"outputs": [],
|
513 |
"source": [
|
|
|
555 |
},
|
556 |
{
|
557 |
"cell_type": "code",
|
558 |
+
"execution_count": 9,
|
559 |
"metadata": {},
|
560 |
"outputs": [
|
561 |
{
|
|
|
563 |
"output_type": "stream",
|
564 |
"text": [
|
565 |
"Completed 50\n",
|
566 |
+
"Completed 100\n",
|
567 |
+
"Completed 150\n",
|
568 |
+
"Completed 200\n",
|
569 |
"\n",
|
570 |
"Less than 90 results:\n",
|
571 |
+
"Percent valid: 0.8448979591836735\n",
|
572 |
+
"Percent SQLite matched: 0.43673469387755104\n",
|
573 |
+
"Percent result matched: 0.6530612244897959\n",
|
574 |
"Dataset length: 245\n"
|
575 |
]
|
576 |
}
|
577 |
],
|
578 |
"source": [
|
579 |
"less_than_90_df = pd.read_csv(\"./train-data/less_than_90.tsv\", sep='\\t')\n",
|
580 |
+
"run_evaluation(less_than_90_df, \"Less than 90\")\n",
|
581 |
"print(\"Dataset length: \" + str(len(less_than_90_df)))"
|
582 |
]
|
583 |
},
|
|
|
590 |
},
|
591 |
{
|
592 |
"cell_type": "code",
|
593 |
+
"execution_count": 10,
|
594 |
"metadata": {},
|
595 |
"outputs": [
|
596 |
{
|
|
|
615 |
"Completed 800\n",
|
616 |
"\n",
|
617 |
"Queries from game results:\n",
|
618 |
+
"Percent valid: 0.7613365155131265\n",
|
619 |
+
"Percent SQLite matched: 0.13842482100238662\n",
|
620 |
+
"Percent result matched: 0.383054892601432\n",
|
621 |
"Dataset length: 838\n"
|
622 |
]
|
623 |
}
|
|
|
637 |
},
|
638 |
{
|
639 |
"cell_type": "code",
|
640 |
+
"execution_count": 11,
|
641 |
"metadata": {},
|
642 |
"outputs": [
|
643 |
{
|
|
|
649 |
"Completed 150\n",
|
650 |
"\n",
|
651 |
"Queries from other stats results:\n",
|
652 |
+
"Percent valid: 0.21428571428571427\n",
|
653 |
+
"Percent SQLite matched: 0.01948051948051948\n",
|
654 |
+
"Percent result matched: 0.07142857142857142\n",
|
655 |
"Dataset length: 154\n"
|
656 |
]
|
657 |
}
|
|
|
671 |
},
|
672 |
{
|
673 |
"cell_type": "code",
|
674 |
+
"execution_count": 12,
|
675 |
"metadata": {},
|
676 |
"outputs": [
|
677 |
{
|
|
|
681 |
"Completed 50\n",
|
682 |
"\n",
|
683 |
"Queries from team results:\n",
|
684 |
+
"Percent valid: 0.8653846153846154\n",
|
685 |
+
"Percent SQLite matched: 0.5961538461538461\n",
|
686 |
+
"Percent result matched: 0.7884615384615384\n",
|
687 |
"Dataset length: 52\n"
|
688 |
]
|
689 |
}
|
|
|
703 |
},
|
704 |
{
|
705 |
"cell_type": "code",
|
706 |
+
"execution_count": 13,
|
707 |
"metadata": {},
|
708 |
"outputs": [
|
709 |
{
|
|
|
715 |
"Completed 150\n",
|
716 |
"\n",
|
717 |
"Queries with join results:\n",
|
718 |
+
"Percent valid: 0.1945945945945946\n",
|
719 |
"Percent SQLite matched: 0.0\n",
|
720 |
+
"Percent result matched: 0.04864864864864865\n",
|
721 |
"Dataset length: 185\n"
|
722 |
]
|
723 |
}
|
|
|
737 |
},
|
738 |
{
|
739 |
"cell_type": "code",
|
740 |
+
"execution_count": 14,
|
741 |
"metadata": {},
|
742 |
"outputs": [
|
743 |
{
|
|
|
763 |
"Completed 850\n",
|
764 |
"\n",
|
765 |
"Queries without join results:\n",
|
766 |
+
"Percent valid: 0.7916181606519208\n",
|
767 |
+
"Percent SQLite matched: 0.17462165308498254\n",
|
768 |
+
"Percent result matched: 0.42374854481955765\n",
|
769 |
"Dataset length: 859\n"
|
770 |
]
|
771 |
}
|
|
|
785 |
},
|
786 |
{
|
787 |
"cell_type": "code",
|
788 |
+
"execution_count": 15,
|
789 |
"metadata": {},
|
790 |
"outputs": [
|
791 |
{
|
|
|
814 |
"Completed 1000\n",
|
815 |
"\n",
|
816 |
"All training data results:\n",
|
817 |
+
"Percent valid: 0.685823754789272\n",
|
818 |
+
"Percent SQLite matched: 0.14367816091954022\n",
|
819 |
"Percent result matched: 0.35823754789272033\n",
|
820 |
"Dataset length: 1044\n"
|
821 |
]
|