train data eda notebook
Browse files
deepseek-coder-1.3b-instruct/train_data_eda.ipynb
CHANGED
@@ -2,12 +2,12 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
-
"\n",
|
11 |
"df = pd.read_csv(\"../train-data/sql_train.tsv\", sep=\"\\t\")"
|
12 |
]
|
13 |
},
|
@@ -31,36 +31,157 @@
|
|
31 |
"df.columns"
|
32 |
]
|
33 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
{
|
35 |
"cell_type": "code",
|
36 |
-
"execution_count":
|
37 |
"metadata": {},
|
38 |
"outputs": [
|
39 |
{
|
40 |
"data": {
|
41 |
"text/plain": [
|
42 |
-
"
|
43 |
-
"unique 1043\n",
|
44 |
-
"top SELECT ROUND(AVG(pts_home),2) AS avg_home_poin...\n",
|
45 |
-
"freq 2\n",
|
46 |
-
"Name: sql_query, dtype: object"
|
47 |
]
|
48 |
},
|
49 |
-
"execution_count":
|
50 |
"metadata": {},
|
51 |
"output_type": "execute_result"
|
52 |
}
|
53 |
],
|
54 |
"source": [
|
55 |
-
"df['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
]
|
57 |
},
|
58 |
{
|
59 |
"cell_type": "code",
|
60 |
-
"execution_count":
|
61 |
"metadata": {},
|
62 |
"outputs": [],
|
63 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
}
|
65 |
],
|
66 |
"metadata": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 18,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
+
"import re\n",
|
11 |
"df = pd.read_csv(\"../train-data/sql_train.tsv\", sep=\"\\t\")"
|
12 |
]
|
13 |
},
|
|
|
31 |
"df.columns"
|
32 |
]
|
33 |
},
|
34 |
+
{
|
35 |
+
"cell_type": "markdown",
|
36 |
+
"metadata": {},
|
37 |
+
"source": [
|
38 |
+
"## By character count"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 14,
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [],
|
46 |
+
"source": [
|
47 |
+
"less_than_90 = short_queries = df[df['sql_query'].str.len() < 90]"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 17,
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"short_queries.to_csv(\"../train-data/less_than_90.tsv\", sep=\"\\t\", index=False)"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "markdown",
|
61 |
+
"metadata": {},
|
62 |
+
"source": [
|
63 |
+
"## From to Where"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 25,
|
69 |
+
"metadata": {},
|
70 |
+
"outputs": [],
|
71 |
+
"source": [
|
72 |
+
"df['after_from'] = df['sql_query'].str.extract(r'FROM\\s+(\\w+)', flags=re.IGNORECASE)[0]"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 26,
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [
|
80 |
+
{
|
81 |
+
"data": {
|
82 |
+
"text/plain": [
|
83 |
+
"0 team\n",
|
84 |
+
"1 game\n",
|
85 |
+
"2 game\n",
|
86 |
+
"3 game\n",
|
87 |
+
"4 game\n",
|
88 |
+
" ... \n",
|
89 |
+
"1039 game\n",
|
90 |
+
"1040 game\n",
|
91 |
+
"1041 other_stats\n",
|
92 |
+
"1042 other_stats\n",
|
93 |
+
"1043 game\n",
|
94 |
+
"Name: after_from, Length: 1044, dtype: object"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
"execution_count": 26,
|
98 |
+
"metadata": {},
|
99 |
+
"output_type": "execute_result"
|
100 |
+
}
|
101 |
+
],
|
102 |
+
"source": [
|
103 |
+
"df['after_from']"
|
104 |
+
]
|
105 |
+
},
|
106 |
{
|
107 |
"cell_type": "code",
|
108 |
+
"execution_count": 27,
|
109 |
"metadata": {},
|
110 |
"outputs": [
|
111 |
{
|
112 |
"data": {
|
113 |
"text/plain": [
|
114 |
+
"array(['team', 'game', 'other_stats'], dtype=object)"
|
|
|
|
|
|
|
|
|
115 |
]
|
116 |
},
|
117 |
+
"execution_count": 27,
|
118 |
"metadata": {},
|
119 |
"output_type": "execute_result"
|
120 |
}
|
121 |
],
|
122 |
"source": [
|
123 |
+
"df['after_from'].dropna().unique()\n"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 28,
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [],
|
131 |
+
"source": [
|
132 |
+
"df_game = df[df['after_from'] == 'game']\n",
|
133 |
+
"df_game.to_csv(\"../train-data/queries_from_game.tsv\", sep=\"\\t\", index=False)"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 29,
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [],
|
141 |
+
"source": [
|
142 |
+
"df_game = df[df['after_from'] == 'team']\n",
|
143 |
+
"df_game.to_csv(\"../train-data/queries_from_team.tsv\", sep=\"\\t\", index=False)"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": 30,
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": [
|
152 |
+
"df_game = df[df['after_from'] == 'other_stats']\n",
|
153 |
+
"df_game.to_csv(\"../train-data/queries_from_other_stats.tsv\", sep=\"\\t\", index=False)"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "markdown",
|
158 |
+
"metadata": {},
|
159 |
+
"source": [
|
160 |
+
"## Contain Join"
|
161 |
]
|
162 |
},
|
163 |
{
|
164 |
"cell_type": "code",
|
165 |
+
"execution_count": 31,
|
166 |
"metadata": {},
|
167 |
"outputs": [],
|
168 |
+
"source": [
|
169 |
+
"# Queries that contain the word JOIN (case-insensitive)\n",
|
170 |
+
"df_with_join = df[df['sql_query'].str.contains(r'\\bJOIN\\b', case=False, na=False)]\n",
|
171 |
+
"df_with_join.to_csv(\"../train-data/with_join.tsv\", sep=\"\\t\", index=False)"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": 32,
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"\n",
|
181 |
+
"# Queries that do NOT contain the word JOIN\n",
|
182 |
+
"df_without_join = df[~df['sql_query'].str.contains(r'\\bJOIN\\b', case=False, na=False)]\n",
|
183 |
+
"df_without_join.to_csv(\"../train-data/without_join.tsv\", sep=\"\\t\", index=False)"
|
184 |
+
]
|
185 |
}
|
186 |
],
|
187 |
"metadata": {
|