Created evaluation loop for running on full dataframes
Browse files- test_pretrained.ipynb +106 -64
test_pretrained.ipynb
CHANGED
@@ -26,14 +26,16 @@
|
|
26 |
"Total dataset examples: 1044\n",
|
27 |
"\n",
|
28 |
"\n",
|
29 |
-
"What was the
|
30 |
-
"SELECT MAX(
|
31 |
-
"
|
32 |
]
|
33 |
}
|
34 |
],
|
35 |
"source": [
|
36 |
"import pandas as pd \n",
|
|
|
|
|
37 |
"\n",
|
38 |
"# Load dataset and check length\n",
|
39 |
"df = pd.read_csv(\"./train-data/sql_train.tsv\", sep='\\t')\n",
|
@@ -58,16 +60,7 @@
|
|
58 |
"cell_type": "code",
|
59 |
"execution_count": 2,
|
60 |
"metadata": {},
|
61 |
-
"outputs": [
|
62 |
-
{
|
63 |
-
"name": "stderr",
|
64 |
-
"output_type": "stream",
|
65 |
-
"text": [
|
66 |
-
"c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
67 |
-
" from .autonotebook import tqdm as notebook_tqdm\n"
|
68 |
-
]
|
69 |
-
}
|
70 |
-
],
|
71 |
"source": [
|
72 |
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
73 |
"import torch\n",
|
@@ -77,7 +70,8 @@
|
|
77 |
"\n",
|
78 |
"# Load model and tokenizer\n",
|
79 |
"tokenizer = AutoTokenizer.from_pretrained(\"./deepseek-coder-1.3b-instruct\")\n",
|
80 |
-
"model = AutoModelForCausalLM.from_pretrained(\"./deepseek-coder-1.3b-instruct\", torch_dtype=torch.bfloat16, device_map=device) "
|
|
|
81 |
]
|
82 |
},
|
83 |
{
|
@@ -288,27 +282,15 @@
|
|
288 |
"execution_count": 4,
|
289 |
"metadata": {},
|
290 |
"outputs": [
|
291 |
-
{
|
292 |
-
"name": "stderr",
|
293 |
-
"output_type": "stream",
|
294 |
-
"text": [
|
295 |
-
"c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\generation\\configuration_utils.py:634: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.95` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.\n",
|
296 |
-
" warnings.warn(\n",
|
297 |
-
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
|
298 |
-
"Setting `pad_token_id` to `eos_token_id`:32021 for open-end generation.\n",
|
299 |
-
"The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
|
300 |
-
"c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\integrations\\sdpa_attention.py:53: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\builder\\windows\\pytorch\\aten\\src\\ATen\\native\\transformers\\cuda\\sdp_utils.cpp:555.)\n",
|
301 |
-
" attn_output = torch.nn.functional.scaled_dot_product_attention(\n"
|
302 |
-
]
|
303 |
-
},
|
304 |
{
|
305 |
"name": "stdout",
|
306 |
"output_type": "stream",
|
307 |
"text": [
|
308 |
"SQLite:\n",
|
309 |
-
"SELECT
|
310 |
-
"FROM
|
311 |
-
"WHERE team_name_home = '
|
|
|
312 |
"\n"
|
313 |
]
|
314 |
}
|
@@ -340,18 +322,8 @@
|
|
340 |
"name": "stdout",
|
341 |
"output_type": "stream",
|
342 |
"text": [
|
343 |
-
"cleaned\n"
|
344 |
-
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"ename": "OperationalError",
|
348 |
-
"evalue": "no such column: team_name_home",
|
349 |
-
"output_type": "error",
|
350 |
-
"traceback": [
|
351 |
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
352 |
-
"\u001b[1;31mOperationalError\u001b[0m Traceback (most recent call last)",
|
353 |
-
"Cell \u001b[1;32mIn[5], line 15\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 14\u001b[0m query \u001b[38;5;241m=\u001b[39m query_output\n\u001b[1;32m---> 15\u001b[0m \u001b[43mcursor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mquery\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 16\u001b[0m rows \u001b[38;5;241m=\u001b[39m cursor\u001b[38;5;241m.\u001b[39mfetchall()\n\u001b[0;32m 17\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m row \u001b[38;5;129;01min\u001b[39;00m rows:\n",
|
354 |
-
"\u001b[1;31mOperationalError\u001b[0m: no such column: team_name_home"
|
355 |
]
|
356 |
}
|
357 |
],
|
@@ -370,10 +342,14 @@
|
|
370 |
" query = query_output[4:]\n",
|
371 |
"else:\n",
|
372 |
" query = query_output\n",
|
373 |
-
"
|
374 |
-
"
|
375 |
-
"
|
376 |
-
"
|
|
|
|
|
|
|
|
|
377 |
]
|
378 |
},
|
379 |
{
|
@@ -385,30 +361,22 @@
|
|
385 |
},
|
386 |
{
|
387 |
"cell_type": "code",
|
388 |
-
"execution_count":
|
389 |
"metadata": {},
|
390 |
"outputs": [
|
391 |
-
{
|
392 |
-
"name": "stderr",
|
393 |
-
"output_type": "stream",
|
394 |
-
"text": [
|
395 |
-
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
|
396 |
-
"Setting `pad_token_id` to `eos_token_id`:32021 for open-end generation.\n"
|
397 |
-
]
|
398 |
-
},
|
399 |
{
|
400 |
"name": "stdout",
|
401 |
"output_type": "stream",
|
402 |
"text": [
|
403 |
-
"What
|
404 |
-
"SELECT
|
405 |
-
"
|
406 |
"SQLite:\n",
|
407 |
-
"SELECT
|
408 |
-
"FROM game
|
409 |
-
"WHERE team_name_home = '
|
|
|
410 |
"\n",
|
411 |
-
"[(45090.0,)]\n",
|
412 |
"Statement valid? True\n",
|
413 |
"SQLite matched? False\n",
|
414 |
"Result matched? True\n"
|
@@ -444,7 +412,7 @@
|
|
444 |
"\n",
|
445 |
" # Check if this is a multi-line query\n",
|
446 |
" if \"|\" in sample_result or \"(\" in sample_result:\n",
|
447 |
-
" print(rows)\n",
|
448 |
" # Create list of results by stripping separators and splitting on them\n",
|
449 |
" if \"(\" in sample_result:\n",
|
450 |
" sample_result = sample_result.replace(\"(\", \"\").replace(\")\", \"\")\n",
|
@@ -477,7 +445,7 @@
|
|
477 |
" return True, query_match, result\n",
|
478 |
" # Else the sample result is a single value or string\n",
|
479 |
" else:\n",
|
480 |
-
" print(rows)\n",
|
481 |
" result = False\n",
|
482 |
" # Loop through model result and see if it contains the sample result\n",
|
483 |
" for row in rows:\n",
|
@@ -530,6 +498,80 @@
|
|
530 |
"print(\"SQLite matched? \" + str(result[1]))\n",
|
531 |
"print(\"Result matched? \" + str(result[2]))"
|
532 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
}
|
534 |
],
|
535 |
"metadata": {
|
|
|
26 |
"Total dataset examples: 1044\n",
|
27 |
"\n",
|
28 |
"\n",
|
29 |
+
"What was the combined rebound total for the Toronto Raptors and Brooklyn Nets in their highest scoring game against each other?\n",
|
30 |
+
"SELECT MAX(g.pts_home + g.pts_away) AS total_points, g.reb_home + g.reb_away AS total_rebounds FROM game g WHERE (g.team_name_home = 'Toronto Raptors' AND g.team_name_away = 'Brooklyn Nets') OR (g.team_name_home = 'Brooklyn Nets' AND g.team_name_away = 'Toronto Raptors') ORDER BY total_points DESC LIMIT 1;\n",
|
31 |
+
"272.0 | 101.0 \n"
|
32 |
]
|
33 |
}
|
34 |
],
|
35 |
"source": [
|
36 |
"import pandas as pd \n",
|
37 |
+
"import warnings\n",
|
38 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
39 |
"\n",
|
40 |
"# Load dataset and check length\n",
|
41 |
"df = pd.read_csv(\"./train-data/sql_train.tsv\", sep='\\t')\n",
|
|
|
60 |
"cell_type": "code",
|
61 |
"execution_count": 2,
|
62 |
"metadata": {},
|
63 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
"source": [
|
65 |
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
66 |
"import torch\n",
|
|
|
70 |
"\n",
|
71 |
"# Load model and tokenizer\n",
|
72 |
"tokenizer = AutoTokenizer.from_pretrained(\"./deepseek-coder-1.3b-instruct\")\n",
|
73 |
+
"model = AutoModelForCausalLM.from_pretrained(\"./deepseek-coder-1.3b-instruct\", torch_dtype=torch.bfloat16, device_map=device) \n",
|
74 |
+
"model.generation_config.pad_token_id = tokenizer.pad_token_id"
|
75 |
]
|
76 |
},
|
77 |
{
|
|
|
282 |
"execution_count": 4,
|
283 |
"metadata": {},
|
284 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
{
|
286 |
"name": "stdout",
|
287 |
"output_type": "stream",
|
288 |
"text": [
|
289 |
"SQLite:\n",
|
290 |
+
"SELECT SUM(reb_home + reb_away) AS combined_rebounds\n",
|
291 |
+
"FROM game\n",
|
292 |
+
"WHERE (team_name_home = 'Toronto Raptors' AND team_name_away = 'Brooklyn Nets')\n",
|
293 |
+
"OR (team_name_home = 'Brooklyn Nets' AND team_name_away = 'Toronto Raptors');\n",
|
294 |
"\n"
|
295 |
]
|
296 |
}
|
|
|
322 |
"name": "stdout",
|
323 |
"output_type": "stream",
|
324 |
"text": [
|
325 |
+
"cleaned\n",
|
326 |
+
"(4350.0,)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
]
|
328 |
}
|
329 |
],
|
|
|
342 |
" query = query_output[4:]\n",
|
343 |
"else:\n",
|
344 |
" query = query_output\n",
|
345 |
+
"\n",
|
346 |
+
"try:\n",
|
347 |
+
" cursor.execute(query)\n",
|
348 |
+
" rows = cursor.fetchall()\n",
|
349 |
+
" for row in rows:\n",
|
350 |
+
" print(row)\n",
|
351 |
+
"except:\n",
|
352 |
+
" pass"
|
353 |
]
|
354 |
},
|
355 |
{
|
|
|
361 |
},
|
362 |
{
|
363 |
"cell_type": "code",
|
364 |
+
"execution_count": 6,
|
365 |
"metadata": {},
|
366 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
{
|
368 |
"name": "stdout",
|
369 |
"output_type": "stream",
|
370 |
"text": [
|
371 |
+
"What was the three-point shooting percentage for the Los Angeles Clippers in games against the Los Angeles Lakers?\n",
|
372 |
+
"SELECT AVG( CASE WHEN team_name_home = 'LA Clippers' THEN fg3_pct_home ELSE fg3_pct_away END ) AS avg_3pt_percentage FROM game WHERE (team_name_home = 'LA Clippers' AND team_name_away = 'Los Angeles Lakers') OR (team_name_home = 'Los Angeles Lakers' AND team_name_away = 'LA Clippers');\n",
|
373 |
+
"0.3734705882\n",
|
374 |
"SQLite:\n",
|
375 |
+
"SELECT team_name_home, team_name_away, AVG(fg3_pct_home) AS three_point_percentage\n",
|
376 |
+
"FROM game\n",
|
377 |
+
"WHERE team_name_home = 'Los Angeles Clippers' AND team_name_away = 'Los Angeles Lakers'\n",
|
378 |
+
"GROUP BY team_name_home, team_name_away;\n",
|
379 |
"\n",
|
|
|
380 |
"Statement valid? True\n",
|
381 |
"SQLite matched? False\n",
|
382 |
"Result matched? True\n"
|
|
|
412 |
"\n",
|
413 |
" # Check if this is a multi-line query\n",
|
414 |
" if \"|\" in sample_result or \"(\" in sample_result:\n",
|
415 |
+
" #print(rows)\n",
|
416 |
" # Create list of results by stripping separators and splitting on them\n",
|
417 |
" if \"(\" in sample_result:\n",
|
418 |
" sample_result = sample_result.replace(\"(\", \"\").replace(\")\", \"\")\n",
|
|
|
445 |
" return True, query_match, result\n",
|
446 |
" # Else the sample result is a single value or string\n",
|
447 |
" else:\n",
|
448 |
+
" #print(rows)\n",
|
449 |
" result = False\n",
|
450 |
" # Loop through model result and see if it contains the sample result\n",
|
451 |
" for row in rows:\n",
|
|
|
498 |
"print(\"SQLite matched? \" + str(result[1]))\n",
|
499 |
"print(\"Result matched? \" + str(result[2]))"
|
500 |
]
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"cell_type": "markdown",
|
504 |
+
"metadata": {},
|
505 |
+
"source": [
|
506 |
+
"## Create function to evaluate pretrained model on full datasets"
|
507 |
+
]
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"cell_type": "code",
|
511 |
+
"execution_count": 9,
|
512 |
+
"metadata": {},
|
513 |
+
"outputs": [
|
514 |
+
{
|
515 |
+
"name": "stdout",
|
516 |
+
"output_type": "stream",
|
517 |
+
"text": [
|
518 |
+
"Less than 90 results:\n",
|
519 |
+
"Percent valid: 0.0653061224489796\n",
|
520 |
+
"Percent SQLite matched: 0.00816326530612245\n",
|
521 |
+
"Percent result matched: 0.024489795918367346\n"
|
522 |
+
]
|
523 |
+
}
|
524 |
+
],
|
525 |
+
"source": [
|
526 |
+
"def run_evaluation(nba_df, title):\n",
|
527 |
+
" counter = 0\n",
|
528 |
+
" num_valid = 0\n",
|
529 |
+
" num_sql_matched = 0\n",
|
530 |
+
" num_result_matched = 0\n",
|
531 |
+
" for index, row in nba_df.iterrows():\n",
|
532 |
+
" # Create message with sample query and run model\n",
|
533 |
+
" message=[{ 'role': 'user', 'content': input_text + row[\"natural_query\"]}]\n",
|
534 |
+
" inputs = tokenizer.apply_chat_template(message, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
|
535 |
+
" outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
|
536 |
+
"\n",
|
537 |
+
" # Obtain output\n",
|
538 |
+
" query_output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n",
|
539 |
+
"\n",
|
540 |
+
" # Evaluate model result\n",
|
541 |
+
" valid, sql_matched, result_matched = compare_result(row[\"sql_query\"], row[\"result\"], query_output)\n",
|
542 |
+
" if valid:\n",
|
543 |
+
" num_valid += 1\n",
|
544 |
+
" if sql_matched:\n",
|
545 |
+
" num_sql_matched += 1\n",
|
546 |
+
" if result_matched:\n",
|
547 |
+
" num_result_matched += 1\n",
|
548 |
+
"\n",
|
549 |
+
" # Break after predefined number of examples\n",
|
550 |
+
" counter += 1\n",
|
551 |
+
" if counter % 50 == 0:\n",
|
552 |
+
" print(\"Completed \" + str(counter))\n",
|
553 |
+
" elif counter == 20:\n",
|
554 |
+
" break\n",
|
555 |
+
"\n",
|
556 |
+
" # Print evaluation results\n",
|
557 |
+
" print(title + \" results:\")\n",
|
558 |
+
" print(\"Percent valid: \" + str(num_valid / len(nba_df)))\n",
|
559 |
+
" print(\"Percent SQLite matched: \" + str(num_sql_matched / len(nba_df)))\n",
|
560 |
+
" print(\"Percent result matched: \" + str(num_result_matched / len(nba_df)))\n",
|
561 |
+
"\n",
|
562 |
+
"less_than_90_df = pd.read_csv(\"./train-data/less_than_90.tsv\", sep='\\t')\n",
|
563 |
+
"run_evaluation(less_than_90_df, \"Less than 90\")\n",
|
564 |
+
"\n",
|
565 |
+
"# Run evaluation on all training data\n",
|
566 |
+
"#run_evaluation(df, \"All training data\")"
|
567 |
+
]
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"cell_type": "markdown",
|
571 |
+
"metadata": {},
|
572 |
+
"source": [
|
573 |
+
"# Evaluate on less than 90 dataset"
|
574 |
+
]
|
575 |
}
|
576 |
],
|
577 |
"metadata": {
|