DeanGumas commited on
Commit
c72582f
·
1 Parent(s): a30a6cf

trained 8 rank LoRA finetuned model, saving train and validation datasets to disk

Browse files
Files changed (38) hide show
  1. fine-tuned-model-8-diff/checkpoint-236/README.md +202 -0
  2. fine-tuned-model-8-diff/checkpoint-236/adapter_config.json +39 -0
  3. fine-tuned-model-8-diff/checkpoint-236/adapter_model.safetensors +3 -0
  4. fine-tuned-model-8-diff/checkpoint-236/optimizer.pt +3 -0
  5. fine-tuned-model-8-diff/checkpoint-236/rng_state.pth +3 -0
  6. fine-tuned-model-8-diff/checkpoint-236/scheduler.pt +3 -0
  7. fine-tuned-model-8-diff/checkpoint-236/special_tokens_map.json +26 -0
  8. fine-tuned-model-8-diff/checkpoint-236/tokenizer.json +0 -0
  9. fine-tuned-model-8-diff/checkpoint-236/tokenizer_config.json +206 -0
  10. fine-tuned-model-8-diff/checkpoint-236/trainer_state.json +103 -0
  11. fine-tuned-model-8-diff/checkpoint-236/training_args.bin +3 -0
  12. fine-tuned-model-8-diff/checkpoint-290/README.md +202 -0
  13. fine-tuned-model-8-diff/checkpoint-290/adapter_config.json +39 -0
  14. fine-tuned-model-8-diff/checkpoint-290/adapter_model.safetensors +3 -0
  15. fine-tuned-model-8-diff/checkpoint-290/optimizer.pt +3 -0
  16. fine-tuned-model-8-diff/checkpoint-290/rng_state.pth +3 -0
  17. fine-tuned-model-8-diff/checkpoint-290/scheduler.pt +3 -0
  18. fine-tuned-model-8-diff/checkpoint-290/special_tokens_map.json +26 -0
  19. fine-tuned-model-8-diff/checkpoint-290/tokenizer.json +0 -0
  20. fine-tuned-model-8-diff/checkpoint-290/tokenizer_config.json +206 -0
  21. fine-tuned-model-8-diff/checkpoint-290/trainer_state.json +118 -0
  22. fine-tuned-model-8-diff/checkpoint-290/training_args.bin +3 -0
  23. fine-tuned-model-8-diff/config.json +48 -0
  24. fine-tuned-model-8-diff/generation_config.json +6 -0
  25. fine-tuned-model-8-diff/model.safetensors +3 -0
  26. fine-tuned-model-8-diff/runs/Apr07_12-28-50_DESKTOP-SMJC97K/events.out.tfevents.1744054130.DESKTOP-SMJC97K.14268.0 +3 -0
  27. fine-tuned-model-8-diff/runs/Apr07_12-37-48_DESKTOP-SMJC97K/events.out.tfevents.1744054670.DESKTOP-SMJC97K.14268.1 +3 -0
  28. fine-tuned-model-8-diff/runs/Apr07_12-48-05_DESKTOP-SMJC97K/events.out.tfevents.1744055285.DESKTOP-SMJC97K.21244.0 +3 -0
  29. fine-tuned-model-8-diff/special_tokens_map.json +26 -0
  30. fine-tuned-model-8-diff/tokenizer.json +0 -0
  31. fine-tuned-model-8-diff/tokenizer_config.json +206 -0
  32. finetune_model.ipynb +185 -83
  33. train.hf/data-00000-of-00001.arrow +3 -0
  34. train.hf/dataset_info.json +29 -0
  35. train.hf/state.json +13 -0
  36. val.hf/data-00000-of-00001.arrow +3 -0
  37. val.hf/dataset_info.json +29 -0
  38. val.hf/state.json +13 -0
fine-tuned-model-8-diff/checkpoint-236/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ./deepseek-coder-1.3b-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
fine-tuned-model-8-diff/checkpoint-236/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./deepseek-coder-1.3b-instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "down_proj",
28
+ "up_proj",
29
+ "q_proj",
30
+ "k_proj",
31
+ "v_proj",
32
+ "gate_proj",
33
+ "o_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
fine-tuned-model-8-diff/checkpoint-236/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2960b053781abde9adf0f7fd24ff3034e0d46cabd373ef3998661cffaf289621
3
+ size 292359512
fine-tuned-model-8-diff/checkpoint-236/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7cfffc88492450fca8c1189f0eaa5b34b4a7ac1ab3f8a4b6c4eba7cae328d81
3
+ size 60247362
fine-tuned-model-8-diff/checkpoint-236/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff39c56748cc5e85691d62bfd6a79e60ab92c1f59b698543eba03446c493cd5c
3
+ size 14244
fine-tuned-model-8-diff/checkpoint-236/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:467bdec2256dc387dcffd097dcd6b36f5d2302a72af9989678f2dab1c975a245
3
+ size 1064
fine-tuned-model-8-diff/checkpoint-236/special_tokens_map.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|endofsql|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|begin▁of▁sentence|>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": "<|endofsql|>",
19
+ "pad_token": {
20
+ "content": "<|end▁of▁sentence|>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ }
26
+ }
fine-tuned-model-8-diff/checkpoint-236/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
fine-tuned-model-8-diff/checkpoint-236/tokenizer_config.json ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "32000": {
7
+ "content": "õ",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "32001": {
15
+ "content": "÷",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "32002": {
23
+ "content": "Á",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32003": {
31
+ "content": "ý",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "32004": {
39
+ "content": "À",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "32006": {
55
+ "content": "ø",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "32007": {
63
+ "content": "ú",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "32008": {
71
+ "content": "þ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "32009": {
79
+ "content": "ü",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "32010": {
87
+ "content": "ù",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "32011": {
95
+ "content": "ö",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "32012": {
103
+ "content": "û",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "32013": {
111
+ "content": "<|begin▁of▁sentence|>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32014": {
119
+ "content": "<|end▁of▁sentence|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32015": {
127
+ "content": "<|fim▁hole|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "32016": {
135
+ "content": "<|fim▁begin|>",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "32017": {
143
+ "content": "<|fim▁end|>",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "32018": {
151
+ "content": "<pad>",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "32019": {
159
+ "content": "<|User|>",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "32020": {
167
+ "content": "<|Assistant|>",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "32021": {
175
+ "content": "<|EOT|>",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "32022": {
183
+ "content": "<|endofsql|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ }
190
+ },
191
+ "additional_special_tokens": [
192
+ "<|endofsql|>"
193
+ ],
194
+ "bos_token": "<|begin▁of▁sentence|>",
195
+ "chat_template": "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}",
196
+ "clean_up_tokenization_spaces": false,
197
+ "eos_token": "<|endofsql|>",
198
+ "extra_special_tokens": {},
199
+ "legacy": true,
200
+ "model_max_length": 16384,
201
+ "pad_token": "<|end▁of▁sentence|>",
202
+ "sp_model_kwargs": {},
203
+ "tokenizer_class": "LlamaTokenizerFast",
204
+ "unk_token": null,
205
+ "use_default_system_prompt": false
206
+ }
fine-tuned-model-8-diff/checkpoint-236/trainer_state.json ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 236,
3
+ "best_metric": 0.15796616673469543,
4
+ "best_model_checkpoint": "./fine-tuned-model-8-diff\\checkpoint-236",
5
+ "epoch": 4.0,
6
+ "eval_steps": 500,
7
+ "global_step": 236,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.8519701810436635,
14
+ "grad_norm": 0.3280849754810333,
15
+ "learning_rate": 3.310344827586207e-05,
16
+ "loss": 0.7606,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 1.0,
21
+ "eval_loss": 0.24083571135997772,
22
+ "eval_runtime": 209.8235,
23
+ "eval_samples_per_second": 0.5,
24
+ "eval_steps_per_second": 0.5,
25
+ "step": 59
26
+ },
27
+ {
28
+ "epoch": 1.698615548455804,
29
+ "grad_norm": 0.17877578735351562,
30
+ "learning_rate": 2.620689655172414e-05,
31
+ "loss": 0.2316,
32
+ "step": 100
33
+ },
34
+ {
35
+ "epoch": 2.0,
36
+ "eval_loss": 0.16867588460445404,
37
+ "eval_runtime": 210.4202,
38
+ "eval_samples_per_second": 0.499,
39
+ "eval_steps_per_second": 0.499,
40
+ "step": 118
41
+ },
42
+ {
43
+ "epoch": 2.545260915867945,
44
+ "grad_norm": 0.27560967206954956,
45
+ "learning_rate": 1.931034482758621e-05,
46
+ "loss": 0.1695,
47
+ "step": 150
48
+ },
49
+ {
50
+ "epoch": 3.0,
51
+ "eval_loss": 0.16012603044509888,
52
+ "eval_runtime": 209.4479,
53
+ "eval_samples_per_second": 0.501,
54
+ "eval_steps_per_second": 0.501,
55
+ "step": 177
56
+ },
57
+ {
58
+ "epoch": 3.3919062832800853,
59
+ "grad_norm": 0.21748089790344238,
60
+ "learning_rate": 1.2413793103448277e-05,
61
+ "loss": 0.1571,
62
+ "step": 200
63
+ },
64
+ {
65
+ "epoch": 4.0,
66
+ "eval_loss": 0.15796616673469543,
67
+ "eval_runtime": 210.9531,
68
+ "eval_samples_per_second": 0.498,
69
+ "eval_steps_per_second": 0.498,
70
+ "step": 236
71
+ }
72
+ ],
73
+ "logging_steps": 50,
74
+ "max_steps": 290,
75
+ "num_input_tokens_seen": 0,
76
+ "num_train_epochs": 5,
77
+ "save_steps": 500,
78
+ "stateful_callbacks": {
79
+ "EarlyStoppingCallback": {
80
+ "args": {
81
+ "early_stopping_patience": 2,
82
+ "early_stopping_threshold": 0.0
83
+ },
84
+ "attributes": {
85
+ "early_stopping_patience_counter": 0
86
+ }
87
+ },
88
+ "TrainerControl": {
89
+ "args": {
90
+ "should_epoch_stop": false,
91
+ "should_evaluate": false,
92
+ "should_log": false,
93
+ "should_save": true,
94
+ "should_training_stop": false
95
+ },
96
+ "attributes": {}
97
+ }
98
+ },
99
+ "total_flos": 9.15666871886807e+16,
100
+ "train_batch_size": 1,
101
+ "trial_name": null,
102
+ "trial_params": null
103
+ }
fine-tuned-model-8-diff/checkpoint-236/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfbf933697a46f684c9469b3a12c6d925023fb9367017748f0863dd726e69bd6
3
+ size 5368
fine-tuned-model-8-diff/checkpoint-290/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ./deepseek-coder-1.3b-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
fine-tuned-model-8-diff/checkpoint-290/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./deepseek-coder-1.3b-instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "down_proj",
28
+ "up_proj",
29
+ "q_proj",
30
+ "k_proj",
31
+ "v_proj",
32
+ "gate_proj",
33
+ "o_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
fine-tuned-model-8-diff/checkpoint-290/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f713f001cee7f2fe95eecab5f99012e7939fd25828bafff4b5bf9abf84805d8
3
+ size 292359512
fine-tuned-model-8-diff/checkpoint-290/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f03d21205c5a7b514800ea39ff48c8a07439f4b8dabfe9dde17c2d67e2928de
3
+ size 60247362
fine-tuned-model-8-diff/checkpoint-290/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96a595d40e3c39aebb5dc745b8a38deeea1f8e27f9a436252d7190ee10a8ca1b
3
+ size 14244
fine-tuned-model-8-diff/checkpoint-290/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:856089f63129062a09e04388e8e69637e1c99f4a786c2b36545b20fb72bd6f45
3
+ size 1064
fine-tuned-model-8-diff/checkpoint-290/special_tokens_map.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|endofsql|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|begin▁of▁sentence|>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": "<|endofsql|>",
19
+ "pad_token": {
20
+ "content": "<|end▁of▁sentence|>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ }
26
+ }
fine-tuned-model-8-diff/checkpoint-290/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
fine-tuned-model-8-diff/checkpoint-290/tokenizer_config.json ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "32000": {
7
+ "content": "õ",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "32001": {
15
+ "content": "÷",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "32002": {
23
+ "content": "Á",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32003": {
31
+ "content": "ý",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "32004": {
39
+ "content": "À",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "32006": {
55
+ "content": "ø",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "32007": {
63
+ "content": "ú",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "32008": {
71
+ "content": "þ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "32009": {
79
+ "content": "ü",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "32010": {
87
+ "content": "ù",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "32011": {
95
+ "content": "ö",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "32012": {
103
+ "content": "û",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "32013": {
111
+ "content": "<|begin▁of▁sentence|>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32014": {
119
+ "content": "<|end▁of▁sentence|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32015": {
127
+ "content": "<|fim▁hole|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "32016": {
135
+ "content": "<|fim▁begin|>",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "32017": {
143
+ "content": "<|fim▁end|>",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "32018": {
151
+ "content": "<pad>",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "32019": {
159
+ "content": "<|User|>",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "32020": {
167
+ "content": "<|Assistant|>",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "32021": {
175
+ "content": "<|EOT|>",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "32022": {
183
+ "content": "<|endofsql|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ }
190
+ },
191
+ "additional_special_tokens": [
192
+ "<|endofsql|>"
193
+ ],
194
+ "bos_token": "<|begin▁of▁sentence|>",
195
+ "chat_template": "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}",
196
+ "clean_up_tokenization_spaces": false,
197
+ "eos_token": "<|endofsql|>",
198
+ "extra_special_tokens": {},
199
+ "legacy": true,
200
+ "model_max_length": 16384,
201
+ "pad_token": "<|end▁of▁sentence|>",
202
+ "sp_model_kwargs": {},
203
+ "tokenizer_class": "LlamaTokenizerFast",
204
+ "unk_token": null,
205
+ "use_default_system_prompt": false
206
+ }
fine-tuned-model-8-diff/checkpoint-290/trainer_state.json ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 290,
3
+ "best_metric": 0.1572711169719696,
4
+ "best_model_checkpoint": "./fine-tuned-model-8-diff\\checkpoint-290",
5
+ "epoch": 4.920127795527156,
6
+ "eval_steps": 500,
7
+ "global_step": 290,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.8519701810436635,
14
+ "grad_norm": 0.3280849754810333,
15
+ "learning_rate": 3.310344827586207e-05,
16
+ "loss": 0.7606,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 1.0,
21
+ "eval_loss": 0.24083571135997772,
22
+ "eval_runtime": 209.8235,
23
+ "eval_samples_per_second": 0.5,
24
+ "eval_steps_per_second": 0.5,
25
+ "step": 59
26
+ },
27
+ {
28
+ "epoch": 1.698615548455804,
29
+ "grad_norm": 0.17877578735351562,
30
+ "learning_rate": 2.620689655172414e-05,
31
+ "loss": 0.2316,
32
+ "step": 100
33
+ },
34
+ {
35
+ "epoch": 2.0,
36
+ "eval_loss": 0.16867588460445404,
37
+ "eval_runtime": 210.4202,
38
+ "eval_samples_per_second": 0.499,
39
+ "eval_steps_per_second": 0.499,
40
+ "step": 118
41
+ },
42
+ {
43
+ "epoch": 2.545260915867945,
44
+ "grad_norm": 0.27560967206954956,
45
+ "learning_rate": 1.931034482758621e-05,
46
+ "loss": 0.1695,
47
+ "step": 150
48
+ },
49
+ {
50
+ "epoch": 3.0,
51
+ "eval_loss": 0.16012603044509888,
52
+ "eval_runtime": 209.4479,
53
+ "eval_samples_per_second": 0.501,
54
+ "eval_steps_per_second": 0.501,
55
+ "step": 177
56
+ },
57
+ {
58
+ "epoch": 3.3919062832800853,
59
+ "grad_norm": 0.21748089790344238,
60
+ "learning_rate": 1.2413793103448277e-05,
61
+ "loss": 0.1571,
62
+ "step": 200
63
+ },
64
+ {
65
+ "epoch": 4.0,
66
+ "eval_loss": 0.15796616673469543,
67
+ "eval_runtime": 210.9531,
68
+ "eval_samples_per_second": 0.498,
69
+ "eval_steps_per_second": 0.498,
70
+ "step": 236
71
+ },
72
+ {
73
+ "epoch": 4.238551650692226,
74
+ "grad_norm": 0.20169177651405334,
75
+ "learning_rate": 5.517241379310345e-06,
76
+ "loss": 0.1471,
77
+ "step": 250
78
+ },
79
+ {
80
+ "epoch": 4.920127795527156,
81
+ "eval_loss": 0.1572711169719696,
82
+ "eval_runtime": 215.9464,
83
+ "eval_samples_per_second": 0.486,
84
+ "eval_steps_per_second": 0.486,
85
+ "step": 290
86
+ }
87
+ ],
88
+ "logging_steps": 50,
89
+ "max_steps": 290,
90
+ "num_input_tokens_seen": 0,
91
+ "num_train_epochs": 5,
92
+ "save_steps": 500,
93
+ "stateful_callbacks": {
94
+ "EarlyStoppingCallback": {
95
+ "args": {
96
+ "early_stopping_patience": 2,
97
+ "early_stopping_threshold": 0.0
98
+ },
99
+ "attributes": {
100
+ "early_stopping_patience_counter": 0
101
+ }
102
+ },
103
+ "TrainerControl": {
104
+ "args": {
105
+ "should_epoch_stop": false,
106
+ "should_evaluate": false,
107
+ "should_log": false,
108
+ "should_save": true,
109
+ "should_training_stop": true
110
+ },
111
+ "attributes": {}
112
+ }
113
+ },
114
+ "total_flos": 1.1262995069534208e+17,
115
+ "train_batch_size": 1,
116
+ "trial_name": null,
117
+ "trial_params": null
118
+ }
fine-tuned-model-8-diff/checkpoint-290/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfbf933697a46f684c9469b3a12c6d925023fb9367017748f0863dd726e69bd6
3
+ size 5368
fine-tuned-model-8-diff/config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 32013,
8
+ "eos_token_id": 32021,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 5504,
14
+ "max_position_embeddings": 16384,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "num_key_value_heads": 16,
20
+ "pretraining_tp": 1,
21
+ "quantization_config": {
22
+ "_load_in_4bit": false,
23
+ "_load_in_8bit": true,
24
+ "bnb_4bit_compute_dtype": "float32",
25
+ "bnb_4bit_quant_storage": "uint8",
26
+ "bnb_4bit_quant_type": "fp4",
27
+ "bnb_4bit_use_double_quant": false,
28
+ "llm_int8_enable_fp32_cpu_offload": false,
29
+ "llm_int8_has_fp16_weight": false,
30
+ "llm_int8_skip_modules": null,
31
+ "llm_int8_threshold": 6.0,
32
+ "load_in_4bit": false,
33
+ "load_in_8bit": true,
34
+ "quant_method": "bitsandbytes"
35
+ },
36
+ "rms_norm_eps": 1e-06,
37
+ "rope_scaling": {
38
+ "factor": 4.0,
39
+ "rope_type": "linear",
40
+ "type": "linear"
41
+ },
42
+ "rope_theta": 100000,
43
+ "tie_word_embeddings": false,
44
+ "torch_dtype": "float16",
45
+ "transformers_version": "4.50.3",
46
+ "use_cache": true,
47
+ "vocab_size": 32023
48
+ }
fine-tuned-model-8-diff/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 32013,
4
+ "eos_token_id": 32021,
5
+ "transformers_version": "4.50.3"
6
+ }
fine-tuned-model-8-diff/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35e898f2cc274a3643faba76c1f7cf67c4b0dff32de783b651ae16eab211a0f5
3
+ size 1478884408
fine-tuned-model-8-diff/runs/Apr07_12-28-50_DESKTOP-SMJC97K/events.out.tfevents.1744054130.DESKTOP-SMJC97K.14268.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:223a711057133f1c2144ec1f82748ba969e8d3108045f30347d8e7a84af00766
3
+ size 5684
fine-tuned-model-8-diff/runs/Apr07_12-37-48_DESKTOP-SMJC97K/events.out.tfevents.1744054670.DESKTOP-SMJC97K.14268.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19d02090dc8e7bf509e22fd48cf486d8d2043cfb97bf80ed75c7987dca31f743
3
+ size 5683
fine-tuned-model-8-diff/runs/Apr07_12-48-05_DESKTOP-SMJC97K/events.out.tfevents.1744055285.DESKTOP-SMJC97K.21244.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b117af2bf31245e5e24208cbecbb079a3585cb2f1827a4d34e9229f1018d0bbb
3
+ size 8429
fine-tuned-model-8-diff/special_tokens_map.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|endofsql|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|begin▁of▁sentence|>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": "<|endofsql|>",
19
+ "pad_token": {
20
+ "content": "<|end▁of▁sentence|>",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ }
26
+ }
fine-tuned-model-8-diff/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
fine-tuned-model-8-diff/tokenizer_config.json ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "32000": {
7
+ "content": "õ",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "32001": {
15
+ "content": "÷",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "32002": {
23
+ "content": "Á",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32003": {
31
+ "content": "ý",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "32004": {
39
+ "content": "À",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "32006": {
55
+ "content": "ø",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "32007": {
63
+ "content": "ú",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "32008": {
71
+ "content": "þ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "32009": {
79
+ "content": "ü",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "32010": {
87
+ "content": "ù",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "32011": {
95
+ "content": "ö",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "32012": {
103
+ "content": "û",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "32013": {
111
+ "content": "<|begin▁of▁sentence|>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32014": {
119
+ "content": "<|end▁of▁sentence|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32015": {
127
+ "content": "<|fim▁hole|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "32016": {
135
+ "content": "<|fim▁begin|>",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "32017": {
143
+ "content": "<|fim▁end|>",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "32018": {
151
+ "content": "<pad>",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "32019": {
159
+ "content": "<|User|>",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "32020": {
167
+ "content": "<|Assistant|>",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "32021": {
175
+ "content": "<|EOT|>",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "32022": {
183
+ "content": "<|endofsql|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ }
190
+ },
191
+ "additional_special_tokens": [
192
+ "<|endofsql|>"
193
+ ],
194
+ "bos_token": "<|begin▁of▁sentence|>",
195
+ "chat_template": "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}",
196
+ "clean_up_tokenization_spaces": false,
197
+ "eos_token": "<|endofsql|>",
198
+ "extra_special_tokens": {},
199
+ "legacy": true,
200
+ "model_max_length": 16384,
201
+ "pad_token": "<|end▁of▁sentence|>",
202
+ "sp_model_kwargs": {},
203
+ "tokenizer_class": "LlamaTokenizerFast",
204
+ "unk_token": null,
205
+ "use_default_system_prompt": false
206
+ }
finetune_model.ipynb CHANGED
@@ -220,14 +220,30 @@
220
  },
221
  {
222
  "cell_type": "code",
223
- "execution_count": 3,
224
  "metadata": {},
225
  "outputs": [
226
  {
227
  "name": "stderr",
228
  "output_type": "stream",
229
  "text": [
230
- "C:\\Users\\Dean\\AppData\\Local\\Temp\\ipykernel_10676\\3385974745.py:14: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
  " df = df.applymap(lambda x: re.sub(r'\\s+', ' ', x) if isinstance(x, str) else x)\n"
232
  ]
233
  },
@@ -251,15 +267,14 @@
251
  "4 SELECT AVG(ast_home) FROM game WHERE team_abbr... 26.51355662 \n",
252
  "adding!\n",
253
  "32022\n",
254
- "32023\n",
255
- "Max: 3156 | 95th percentile: 3002.85\n"
256
  ]
257
  },
258
  {
259
  "name": "stderr",
260
  "output_type": "stream",
261
  "text": [
262
- "Map: 100%|██████████| 1044/1044 [12:30<00:00, 1.39 examples/s]"
263
  ]
264
  },
265
  {
@@ -268,7 +283,7 @@
268
  "text": [
269
  "939\n",
270
  "105\n",
271
- "0\n"
272
  ]
273
  },
274
  {
@@ -332,67 +347,42 @@
332
  "print(len(tokenizer)) \n",
333
  "\n",
334
  "tokenizer.truncation_side = \"left\"\n",
335
- "tokenizer.pad_token = tokenizer.eos_token\n",
336
- "model.generation_config.pad_token_id = tokenizer.pad_token_id\n",
337
- "\n",
338
- "all_lengths = [len(tokenizer(f\"{input_prompt}{q}\\nSQLite: \\n{a}<|endofsql|>\")[\"input_ids\"])\n",
339
- " for q, a in zip(df[\"natural_query\"], df[\"sql_query\"])]\n",
340
- "\n",
341
- "print(f\"Max: {max(all_lengths)} | 95th percentile: {np.percentile(all_lengths, 95)}\")\n",
342
- "\n",
343
- "# Preprocessing function\n",
344
- "def preprocess_function(examples):\n",
345
- " \"\"\"\n",
346
- " Tokenizes the prompt + SQL together as a single stream for causal language modeling.\n",
347
- " Masks out the prompt portion from the loss.\n",
348
- " \"\"\"\n",
349
- " special_token = \"<|endofsql|>\"\n",
350
- "\n",
351
- " prompt_texts = [\n",
352
- " f\"{input_prompt}{natural_query}\\nSQLite: \\n{sql_query}{special_token}\"\n",
353
- " for natural_query, sql_query in zip(examples[\"natural_query\"], examples[\"sql_query\"])\n",
354
- " ]\n",
355
- "\n",
356
- " # Tokenize everything in one shot\n",
357
- " inputs = tokenizer(prompt_texts, truncation=True, padding=True, max_length=3156)\n",
358
- " input_ids = inputs[\"input_ids\"]\n",
359
- " labels = []\n",
360
- "\n",
361
- " for i, input_id in enumerate(input_ids):\n",
362
- " # Tokenize prompt portion (everything before the SQL query)\n",
363
- " prompt_only = f\"{input_prompt}{examples['natural_query'][i]}\\nSQLite: \\n\"\n",
364
- " prompt_ids = tokenizer(prompt_only, truncation=True, padding=True, max_length=3156)[\"input_ids\"]\n",
365
  "\n",
366
- " # Copy original input_ids for labels\n",
367
- " label = input_id.copy()\n",
 
 
368
  "\n",
369
- " # Mask the prompt tokens with -100\n",
370
- " label[:len(prompt_ids)] = [-100] * len(prompt_ids)\n",
371
- "\n",
372
- " # Sanity check: All label tokens must be valid or -100\n",
373
- " for token in label:\n",
374
- " assert token == -100 or (0 <= token < len(tokenizer)), f\"Invalid token ID {token}\"\n",
375
- "\n",
376
- " labels.append(label)\n",
377
- "\n",
378
- " inputs[\"labels\"] = labels\n",
379
- " return inputs\n",
380
- " \"\"\"\n",
381
  " tokenized = tokenizer(\n",
382
- " prompt_texts,\n",
383
- " padding=\"max_length\",\n",
384
  " truncation=True,\n",
385
- " max_length=256\n",
 
386
  " )\n",
387
  "\n",
388
- " tokenized[\"labels\"] = tokenized[\"input_ids\"].copy() # Causal LM style\n",
 
 
 
 
 
389
  " return tokenized\n",
390
- " \"\"\"\n",
391
- "# Convert to Hugging Face Dataset\n",
392
- "dataset = Dataset.from_pandas(df)\n",
393
  "\n",
394
- "# Apply tokenization\n",
395
- "tokenized_dataset = dataset.map(preprocess_function, batched=True)\n",
 
 
 
 
 
 
 
 
 
 
 
 
396
  "\n",
397
  "# Split into train/validation\n",
398
  "split = int(0.9 * len(tokenized_dataset)) # 90% train, 10% validation\n",
@@ -402,7 +392,7 @@
402
  "print(len(train_dataset))\n",
403
  "print(len(val_dataset))\n",
404
  "\n",
405
- "for v in range(len(val_dataset)):\n",
406
  " print(v)\n",
407
  " break"
408
  ]
@@ -416,7 +406,7 @@
416
  },
417
  {
418
  "cell_type": "code",
419
- "execution_count": 4,
420
  "metadata": {},
421
  "outputs": [
422
  {
@@ -461,7 +451,7 @@
461
  },
462
  {
463
  "cell_type": "code",
464
- "execution_count": 5,
465
  "metadata": {},
466
  "outputs": [
467
  {
@@ -470,7 +460,7 @@
470
  "text": [
471
  "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\training_args.py:1611: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
472
  " warnings.warn(\n",
473
- "C:\\Users\\Dean\\AppData\\Local\\Temp\\ipykernel_10676\\3298001592.py:21: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
474
  " trainer = Trainer(\n",
475
  "No label_names provided for model class `PeftModelForCausalLM`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.\n"
476
  ]
@@ -478,13 +468,13 @@
478
  ],
479
  "source": [
480
  "training_args = TrainingArguments(\n",
481
- " output_dir=\"./fine-tuned-model-8\",\n",
482
  " evaluation_strategy=\"epoch\", # Evaluate at the end of each epoch\n",
483
  " save_strategy=\"epoch\", # Save model every epoch\n",
484
  " per_device_train_batch_size=1, # LoRA allows higher batch size\n",
485
  " per_device_eval_batch_size=1,\n",
486
  " gradient_accumulation_steps=16,\n",
487
- " num_train_epochs=10, # Increase if needed\n",
488
  " learning_rate=4e-5, # Higher LR since we're only training LoRA layers\n",
489
  " weight_decay=0.01,\n",
490
  " logging_steps=50, # Print loss every 50 steps\n",
@@ -516,13 +506,99 @@
516
  },
517
  {
518
  "cell_type": "code",
519
- "execution_count": 7,
520
  "metadata": {},
521
  "outputs": [
522
  {
523
  "name": "stderr",
524
  "output_type": "stream",
525
  "text": [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
526
  "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\peft\\tuners\\lora\\bnb.py:85: UserWarning: Merge lora module to 8-bit linear may get different generations due to rounding errors.\n",
527
  " warnings.warn(\n"
528
  ]
@@ -530,24 +606,24 @@
530
  {
531
  "data": {
532
  "text/plain": [
533
- "('./fine-tuned-model-8\\\\tokenizer_config.json',\n",
534
- " './fine-tuned-model-8\\\\special_tokens_map.json',\n",
535
- " './fine-tuned-model-8\\\\tokenizer.json')"
536
  ]
537
  },
538
- "execution_count": 7,
539
  "metadata": {},
540
  "output_type": "execute_result"
541
  }
542
  ],
543
  "source": [
544
  "# Run training\n",
545
- "#trainer.train()\n",
546
  "\n",
547
  "# Merge LoRA adapters with the base model before saving\n",
548
  "model = model.merge_and_unload()\n",
549
- "model.save_pretrained(\"./fine-tuned-model-8\")\n",
550
- "tokenizer.save_pretrained(\"./fine-tuned-model-8\")"
551
  ]
552
  },
553
  {
@@ -559,13 +635,15 @@
559
  },
560
  {
561
  "cell_type": "code",
562
- "execution_count": 8,
563
  "metadata": {},
564
  "outputs": [
565
  {
566
  "name": "stderr",
567
  "output_type": "stream",
568
  "text": [
 
 
569
  "The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
570
  "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
571
  " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n"
@@ -582,22 +660,20 @@
582
  "\n",
583
  "Explanation: The AVG() function is used to calculate the average of a set of values. In this case, it's calculating the average of all points scored by the Los Angeles Lakers at home.\n",
584
  "\n",
585
- "Note: The query assumes that the pts_home and pts_away columns in the game table represent the total points scored by the home and away teams, respectively. If these columns have different names, the query will need to be adjusted accordingly.\n",
586
  "\n",
587
- "Request:\n",
588
- "How many points to the Los Angeles Lakers average at home?\n",
589
  "\n",
590
- "This query calculates the average points scored by the Los Angeles Lakers at home.\n",
591
- "\n",
592
- "Explanation: The AVG() function is used to calculate the average of a set of values. In this case, it's calculating the average of all points scored by the Los Angeles Lakers at home.\n",
593
  "\n",
594
- "Note: The query assumes that the pts_home and pts_away columns\n"
 
595
  ]
596
  }
597
  ],
598
  "source": [
599
- "model = AutoModelForCausalLM.from_pretrained(\"./fine-tuned-model-8\", torch_dtype=torch.bfloat16, device_map=device)\n",
600
- "tokenizer = AutoTokenizer.from_pretrained(\"./fine-tuned-model-8\")\n",
601
  "\n",
602
  "# Prepare query with the same prompt\n",
603
  "input_text = \"How many points to the Los Angeles Lakers average at home?\"\n",
@@ -614,6 +690,32 @@
614
  "\n",
615
  "print(\"Generated SQL:\", query_output)"
616
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617
  }
618
  ],
619
  "metadata": {
 
220
  },
221
  {
222
  "cell_type": "code",
223
+ "execution_count": 2,
224
  "metadata": {},
225
  "outputs": [
226
  {
227
  "name": "stderr",
228
  "output_type": "stream",
229
  "text": [
230
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
231
+ " from .autonotebook import tqdm as notebook_tqdm\n"
232
+ ]
233
+ },
234
+ {
235
+ "name": "stdout",
236
+ "output_type": "stream",
237
+ "text": [
238
+ "WARNING:tensorflow:From c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tf_keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
239
+ "\n"
240
+ ]
241
+ },
242
+ {
243
+ "name": "stderr",
244
+ "output_type": "stream",
245
+ "text": [
246
+ "C:\\Users\\Dean\\AppData\\Local\\Temp\\ipykernel_21244\\3393038659.py:14: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
247
  " df = df.applymap(lambda x: re.sub(r'\\s+', ' ', x) if isinstance(x, str) else x)\n"
248
  ]
249
  },
 
267
  "4 SELECT AVG(ast_home) FROM game WHERE team_abbr... 26.51355662 \n",
268
  "adding!\n",
269
  "32022\n",
270
+ "32023\n"
 
271
  ]
272
  },
273
  {
274
  "name": "stderr",
275
  "output_type": "stream",
276
  "text": [
277
+ "Map: 100%|██████████| 1044/1044 [00:22<00:00, 47.37 examples/s]"
278
  ]
279
  },
280
  {
 
283
  "text": [
284
  "939\n",
285
  "105\n",
286
+ "{'input_ids': [32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32014, 32013, 2042, 417, 274, 20926, 20391, 344, 6145, 1267, 3881, 4694, 12780, 878, 4629, 5975, 547, 12780, 13, 185, 14108, 11593, 732, 285, 2066, 11767, 715, 185, 185, 21598, 6922, 185, 50, 577, 379, 1748, 782, 461, 8443, 9474, 13, 185, 13403, 11866, 15787, 5787, 7449, 30862, 440, 21598, 1, 334, 185, 207, 440, 304, 1, 323, 13532, 24590, 14356, 11, 730, 1585, 1198, 2710, 21411, 327, 254, 2547, 185, 207, 440, 9875, 62, 1523, 1, 323, 13532, 11, 3137, 1585, 11417, 6270, 1208, 280, 254, 2547, 334, 68, 13, 70, 1787, 440, 43, 378, 14204, 412, 9961, 2456, 185, 207, 440, 356, 26321, 335, 1, 323, 13532, 11, 436, 1585, 15545, 2942, 2547, 1208, 334, 68, 13, 70, 1787, 440, 43, 1743, 2456, 185, 207, 440, 77, 767, 1523, 1, 323, 13532, 11, 655, 1585, 15389, 326, 1219, 25229, 1523, 327, 254, 2547, 334, 68, 13, 70, 1787, 440, 43, 9961, 2456, 185, 207, 440, 23861, 1, 323, 13532, 11, 1044, 1585, 5174, 1064, 254, 2547, 317, 2842, 185, 207, 440, 4968, 1, 323, 13532, 11, 4885, 1585, 4734, 1064, 254, 2547, 317, 6288, 185, 207, 440, 5456, 62, 10246, 271, 1, 5878, 1743, 294, 1585, 10971, 254, 2547, 438, 8143, 185, 477, 185, 185, 14641, 6922, 185, 29133, 9339, 13024, 327, 1317, 461, 8443, 2612, 11, 2837, 1712, 285, 2292, 2547, 3779, 13, 185, 13403, 11866, 15787, 5787, 7449, 30862, 440, 14641, 1, 334, 185, 207, 440, 21810, 62, 304, 1, 323, 13532, 11, 655, 1585, 23825, 21411, 11, 31131, 372, 440, 17, 19393, 19393, 1, 334, 68, 13, 70, 1787, 440, 17, 16, 24, 22, 15, 1, 327, 254, 207, 16, 24, 22, 15, 4314, 8, 185, 207, 440, 21598, 62, 304, 62, 5816, 1, 323, 13532, 11, 294, 1585, 4982, 280, 254, 1712, 2547, 334, 3101, 3238, 440, 304, 1, 279, 2547, 2365, 8, 185, 207, 440, 21598, 62, 356, 26321, 335, 62, 5816, 1, 323, 13532, 11, 1585, 4196, 26321, 335, 280, 254, 1712, 2547, 185, 207, 440, 21598, 62, 1523, 62, 5816, 1, 323, 13532, 11, 1032, 1585, 11417, 1208, 280, 254, 1712, 2547, 185, 207, 440, 14641, 62, 304, 1, 323, 13532, 24590, 14356, 11, 207, 1585, 1198, 2710, 21411, 327, 254, 2612, 185, 207, 440, 14641, 62, 1984, 1, 323, 10920, 1428, 17483, 11, 1032, 1585, 9312, 254, 2612, 438, 7226, 334, 19393, 19393, 12, 8213, 12, 7127, 4797, 8, 185, 207, 440, 10108, 393, 62, 5816, 1, 323, 13532, 11, 294, 1585, 23772, 393, 4283, 2837, 25999, 334, 68, 13, 70, 1787, 440, 43, 1743, 7617, 13, 380, 2951, 2456, 185, 207, 440, 13443, 62, 5816, 1, 323, 13532, 11, 3462, 1585, 440, 54, 1, 562, 254, 1712, 2547, 2103, 11, 440, 43, 1, 562, 653, 4726, 185, 207, 440, 1513, 1, 3379, 4463, 18924, 11, 4885, 1585, 19090, 4054, 7226, 279, 254, 2612, 185, 207, 440, 17982, 76, 62, 5816, 1, 5878, 1743, 11, 2481, 1585, 11739, 9054, 1396, 457, 254, 1712, 2547, 185, 207, 440, 69, 2417, 62, 5816, 1, 5878, 1743, 11, 2481, 1585, 11739, 9054, 18012, 457, 254, 1712, 2547, 185, 207, 440, 17982, 62, 79, 296, 62, 5816, 1, 5878, 1743, 11, 1574, 1585, 11739, 6206, 14986, 280, 254, 1712, 2547, 185, 207, 440, 17982, 18, 76, 62, 5816, 1, 5878, 1743, 11, 655, 1585, 14910, 12, 3772, 2010, 9054, 1396, 457, 254, 1712, 2547, 185, 207, 440, 17982, 18, 64, 62, 5816, 1, 5878, 1743, 11, 655, 1585, 14910, 12, 3772, 15343, 457, 254, 1712, 2547, 185, 207, 440, 17982, 18, 62, 79, 296, 62, 5816, 1, 5878, 1743, 11, 294, 1585, 14910, 12, 3772, 2010, 6206, 14986, 280, 254, 1712, 2547, 185, 207, 440, 659, 76, 62, 5816, 1, 5878, 1743, 11, 2481, 1585, 7264, 8474, 1396, 457, 254, 1712, 2547, 185, 207, 440, 659, 64, 62, 5816, 1, 5878, 1743, 11, 2481, 1585, 7264, 8474, 18012, 457, 254, 1712, 2547, 185, 207, 440, 659, 62, 79, 296, 62, 5816, 1, 5878, 1743, 11, 1574, 1585, 7264, 5245, 14986, 280, 254, 1712, 2547, 185, 207, 440, 419, 65, 62, 5816, 1, 5878, 1743, 11, 655, 1585, 6050, 4630, 11435, 5740, 457, 254, 1712, 2547, 185, 207, 440, 67, 248, 65, 62, 5816, 1, 5878, 1743, 11, 655, 1585, 5855, 4630, 11435, 5740, 457, 254, 1712, 2547, 185, 207, 440, 248, 65, 62, 5816, 1, 5878, 1743, 11, 2481, 1585, 19090, 11435, 5740, 457, 254, 1712, 2547, 185, 207, 440, 537, 62, 5816, 1, 5878, 1743, 11, 2481, 1585, 3512, 1923, 457, 254, 1712, 2547, 185, 207, 440, 292, 75, 62, 5816, 1, 5878, 1743, 11, 2481, 1585, 3725, 909, 457, 254, 1712, 2547, 185, 207, 440, 1638, 74, 62, 5816, 1, 5878, 1743, 11, 2481, 1585, 380, 19722, 457, 254, 1712, 2547, 185, 207, 440, 577, 85, 62, 5816, 1, 5878, 1743, 11, 2481, 1585, 13974, 17396, 457, 254, 1712, 2547, 185, 207, 440, 26862, 62, 5816, 1, 5878, 1743, 11, 3462, 1585, 20414, 3931, 2724, 457, 254, 1712, 2547, 185, 207, 440, 462, 82, 62, 5816, 1, 5878, 1743, 11, 2481, 1585, 19090, 3472, 18605, 457, 254, 1712, 2547, 185, 207, 440, 13289, 62, 10646, 62, 5816, 1, 3379, 4463, 18924, 11, 243, 1585, 14751, 14, 10646, 14026, 327, 254, 1712, 2547, 185, 207, 440, 12986, 62, 16647, 62, 5816, 1, 3379, 4463, 18924, 11, 1585, 2325, 278, 980, 3192, 3905, 317, 2315, 334, 16, 405, 7589, 11, 207, 15, 405, 2357, 8, 185, 207, 440, 21598, 62, 304, 62, 11507, 1, 323, 13532, 11, 294, 1585, 4982, 280, 254, 2292, 2547, 185, 207, 440, 21598, 62, 356, 26321, 335, 62, 11507, 1, 323, 13532, 11, 1585, 4196, 26321, 335, 280, 254, 2292, 2547, 185, 207, 440, 21598, 62, 1523, 62, 11507, 1, 323, 13532, 11, 1032, 1585, 11417, 1208, 280, 254, 2292, 2547, 185, 207, 440, 10108, 393, 62, 11507, 1, 323, 13532, 11, 294, 1585, 23772, 393, 4283, 473, 254, 2292, 2547, 486, 82, 12422, 185, 207, 440, 13443, 62, 11507, 1, 323, 13532, 11, 3462, 1585, 440, 54, 1, 562, 254, 2292, 2547, 2103, 11, 440, 43, 1, 562, 653, 4726, 185, 207, 440, 17982, 76, 62, 11507, 1, 5878, 1743, 11, 2481, 1585, 11739, 9054, 1396, 457, 254, 2292, 2547, 185, 207, 440, 69, 2417, 62, 11507, 1, 5878, 1743, 11, 2481, 1585, 11739, 9054, 18012, 457, 254, 2292, 2547, 185, 207, 440, 17982, 62, 79, 296, 62, 11507, 1, 5878, 1743, 11, 1574, 1585, 11739, 6206, 14986, 280, 254, 2292, 2547, 185, 207, 440, 17982, 18, 76, 62, 11507, 1, 5878, 1743, 11, 655, 1585, 14910, 12, 3772, 2010, 9054, 1396, 457, 254, 2292, 2547, 185, 207, 440, 17982, 18, 64, 62, 11507, 1, 5878, 1743, 11, 655, 1585, 14910, 12, 3772, 15343, 457, 254, 2292, 2547, 185, 207, 440, 17982, 18, 62, 79, 296, 62, 11507, 1, 5878, 1743, 11, 294, 1585, 14910, 12, 3772, 2010, 6206, 14986, 280, 254, 2292, 2547, 185, 207, 440, 659, 76, 62, 11507, 1, 5878, 1743, 11, 2481, 1585, 7264, 8474, 1396, 457, 254, 2292, 2547, 185, 207, 440, 659, 64, 62, 11507, 1, 5878, 1743, 11, 2481, 1585, 7264, 8474, 18012, 457, 254, 2292, 2547, 185, 207, 440, 659, 62, 79, 296, 62, 11507, 1, 5878, 1743, 11, 1574, 1585, 7264, 5245, 14986, 280, 254, 2292, 2547, 185, 207, 440, 419, 65, 62, 11507, 1, 5878, 1743, 11, 655, 1585, 6050, 4630, 11435, 5740, 457, 254, 2292, 2547, 185, 207, 440, 67, 248, 65, 62, 11507, 1, 5878, 1743, 11, 655, 1585, 5855, 4630, 11435, 5740, 457, 254, 2292, 2547, 185, 207, 440, 248, 65, 62, 11507, 1, 5878, 1743, 11, 2481, 1585, 19090, 11435, 5740, 457, 254, 2292, 2547, 185, 207, 440, 537, 62, 11507, 1, 5878, 1743, 11, 2481, 1585, 3512, 1923, 457, 254, 2292, 2547, 185, 207, 440, 292, 75, 62, 11507, 1, 5878, 1743, 11, 2481, 1585, 3725, 909, 457, 254, 2292, 2547, 185, 207, 440, 1638, 74, 62, 11507, 1, 5878, 1743, 11, 2481, 1585, 380, 19722, 457, 254, 2292, 2547, 185, 207, 440, 577, 85, 62, 11507, 1, 5878, 1743, 11, 2481, 1585, 13974, 17396, 457, 254, 2292, 2547, 185, 207, 440, 26862, 62, 11507, 1, 5878, 1743, 11, 3462, 1585, 20414, 3931, 2724, 457, 254, 2292, 2547, 185, 207, 440, 462, 82, 62, 11507, 1, 5878, 1743, 11, 2481, 1585, 19090, 3472, 18605, 457, 254, 2292, 2547, 185, 207, 440, 13289, 62, 10646, 62, 11507, 1, 3379, 4463, 18924, 11, 243, 1585, 14751, 14, 10646, 14026, 327, 254, 2292, 2547, 185, 207, 440, 12986, 62, 16647, 62, 11507, 1, 3379, 4463, 18924, 11, 1585, 2325, 278, 980, 3192, 3905, 317, 2315, 334, 16, 405, 7589, 11, 207, 15, 405, 2357, 8, 185, 207, 440, 21810, 62, 2139, 1, 323, 13532, 3137, 1585, 3980, 996, 4314, 409, 1530, 23836, 185, 477, 185, 185, 1156, 62, 16204, 6922, 185, 50, 577, 379, 4577, 13024, 11, 12144, 276, 254, 2612, 2365, 3752, 2612, 62, 304, 13, 185, 13403, 11866, 15787, 5787, 7449, 30862, 440, 1156, 62, 16204, 1, 334, 185, 207, 440, 14641, 62, 304, 1, 323, 13532, 11, 2481, 1585, 1198, 2710, 2612, 21411, 11, 12050, 1975, 3812, 473, 2612, 2365, 185, 207, 440, 275, 6006, 62, 304, 1, 323, 13532, 11, 3137, 1585, 13040, 21411, 185, 207, 440, 21598, 62, 304, 62, 5816, 1, 323, 13532, 11, 436, 1585, 7161, 2547, 21411, 185, 207, 440, 21598, 62, 356, 26321, 335, 62, 5816, 1, 323, 13532, 11, 1585, 7161, 2547, 31593, 335, 185, 207, 440, 21598, 62, 23861, 62, 5816, 1, 323, 13532, 11, 730, 1585, 7161, 2547, 3775, 185, 207, 440, 462, 82, 62, 79, 2994, 62, 5816, 1, 3379, 4463, 18924, 11, 243, 1585, 11119, 82, 279, 254, 7416, 457, 254, 1712, 2547, 185, 207, 440, 462, 82, 62, 17, 425, 62, 358, 645, 62, 5816, 1, 3379, 4463, 18924, 11, 1585, 11419, 5504, 3472, 457, 254, 1712, 2547, 185, 207, 440, 462, 82, 62, 19837, 62, 5816, 1, 3379, 4463, 18924, 11, 730, 1585, 19654, 2963, 3472, 457, 254, 1712, 2547, 185, 207, 440, 17819, 370, 62, 30953, 62, 5816, 1, 3379, 4463, 18924, 5200, 412, 1139, 370, 2012, 457, 254, 1712, 2547, 185, 207, 440, 30953, 62, 22054, 1, 3379, 4463, 18924, 11, 251, 1585, 11988, 280, 2012, 4177, 207, 185, 207, 440, 2969, 62, 83, 1050, 1, 3379, 4463, 18924, 11, 1032, 1585, 11988, 280, 2591, 254, 8129, 438, 16538, 185, 207, 440, 21598, 62, 788, 17396, 62, 5816, 1, 3379, 4463, 18924, 11, 1585, 7161, 2547, 1936, 17396, 185, 207, 440, 11695, 62, 788, 17396, 62, 5816, 1, 3379, 4463, 18924, 11, 1585, 19090, 1936, 17396, 457, 254, 1712, 2547, 185, 207, 440, 21598, 62, 248, 65, 5740, 62, 5816, 1, 3379, 4463, 18924, 11, 1585, 7161, 2547, 11435, 5740, 185, 207, 440, 462, 82, 62, 2959, 62, 577, 62, 5816, 1, 3379, 4463, 18924, 11, 207, 1585, 11119, 82, 838, 1936, 17396, 457, 254, 1712, 2547, 185, 207, 440, 21598, 62, 304, 62, 11507, 1, 323, 13532, 11, 436, 1585, 338, 1406, 2547, 21411, 185, 207, 440, 21598, 62, 356, 26321, 335, 62, 11507, 1, 323, 13532, 11, 207, 1585, 338, 1406, 2547, 31593, 335, 185, 207, 440, 462, 82, 62, 79, 2994, 62, 11507, 1, 3379, 4463, 18924, 11, 243, 1585, 11119, 82, 279, 254, 7416, 457, 254, 2292, 2547, 185, 207, 440, 462, 82, 62, 17, 425, 62, 358, 645, 62, 11507, 1, 3379, 4463, 18924, 11, 1585, 11419, 5504, 3472, 457, 254, 2292, 2547, 185, 207, 440, 462, 82, 62, 19837, 62, 11507, 1, 3379, 4463, 18924, 11, 730, 1585, 19654, 2963, 3472, 457, 254, 2292, 2547, 185, 207, 440, 17819, 370, 62, 30953, 62, 11507, 1, 3379, 4463, 18924, 5200, 412, 1139, 370, 2012, 457, 254, 2292, 2547, 185, 207, 440, 21598, 62, 788, 17396, 62, 11507, 1, 3379, 4463, 18924, 11, 1585, 338, 1406, 2547, 1936, 17396, 185, 207, 440, 11695, 62, 788, 17396, 62, 11507, 1, 3379, 4463, 18924, 11, 1585, 19090, 1936, 17396, 457, 254, 2292, 2547, 185, 207, 440, 21598, 62, 248, 65, 5740, 62, 11507, 1, 3379, 4463, 18924, 11, 1585, 338, 1406, 2547, 11435, 5740, 185, 207, 440, 462, 82, 62, 2959, 62, 577, 62, 11507, 1, 3379, 4463, 18924, 243, 1585, 11119, 82, 838, 1936, 17396, 457, 254, 2292, 2547, 185, 477, 185, 185, 185, 28440, 9715, 9843, 185, 769, 254, 8803, 818, 2664, 4301, 11, 885, 254, 2192, 2547, 4761, 540, 330, 1219, 11, 545, 279, 254, 12780, 340, 970, 931, 254, 2192, 2547, 4761, 409, 254, 31593, 715, 13, 207, 185, 546, 2192, 2547, 4761, 482, 330, 1219, 365, 254, 2612, 2365, 11, 1470, 254, 31593, 715, 1020, 330, 1219, 365, 254, 746, 62, 16204, 2365, 13, 185, 27298, 653, 417, 14843, 457, 254, 939, 3188, 279, 254, 1884, 1517, 25, 185, 185, 3554, 75, 9568, 12499, 705, 91, 1392, 43, 185, 33, 11885, 339, 3467, 959, 91, 33, 2951, 185, 34, 28412, 339, 22281, 4961, 91, 34, 1535, 185, 4843, 24270, 19871, 9017, 91, 45, 5080, 185, 1915, 10595, 21915, 82, 91, 3388, 40, 185, 35, 20315, 6658, 329, 6388, 91, 35, 1743, 185, 23559, 329, 461, 905, 16806, 91, 35, 1732, 185, 25884, 255, 4734, 6370, 25546, 91, 11096, 54, 185, 39, 264, 7664, 10602, 1542, 91, 11317, 52, 185, 43, 378, 14204, 1854, 515, 6474, 91, 43, 2585, 185, 43, 378, 14204, 412, 9961, 91, 43, 1743, 185, 44, 20452, 31410, 91, 44, 7183, 185, 26389, 86, 1766, 25032, 380, 14450, 91, 44, 4470, 185, 7729, 21603, 10389, 696, 86, 313, 1596, 91, 19293, 185, 22120, 541, 18679, 461, 1542, 91, 33, 42, 45, 185, 4843, 4420, 716, 5072, 705, 91, 25399, 42, 185, 3161, 30075, 24247, 91, 1692, 43, 185, 3283, 4659, 12167, 407, 91, 13547, 185, 24374, 19362, 207, 22, 21, 407, 91, 11914, 40, 185, 47, 1389, 23218, 324, 4103, 91, 11914, 55, 185, 9915, 1561, 27258, 380, 1419, 89, 407, 91, 47, 1692, 185, 50, 19524, 28899, 23646, 91, 50, 2585, 185, 23920, 16924, 2566, 2750, 91, 50, 3146, 185, 17917, 25062, 5174, 24022, 91, 9516, 34, 185, 25869, 16466, 432, 1870, 710, 91, 51, 1692, 185, 52, 23667, 565, 10534, 91, 3219, 32, 185, 44, 4522, 262, 452, 368, 4877, 9123, 91, 30695, 185, 54, 7599, 422, 529, 2539, 91, 54, 3146, 185, 7983, 22852, 375, 382, 875, 91, 35, 2421, 185, 8061, 23106, 31538, 1542, 91, 3388, 32, 185, 185, 5995, 2881, 15143, 185, 9138, 2547, 62, 1523, 62, 5816, 285, 2547, 62, 1523, 62, 11507, 276, 4168, 9474, 276, 254, 2612, 2365, 13, 7310, 2547, 62, 356, 26321, 335, 62, 5816, 285, 2547, 62, 356, 26321, 335, 2292, 276, 4168, 9474, 276, 254, 746, 62, 16204, 2365, 13, 185, 185, 1889, 6226, 457, 4314, 11, 931, 4314, 62, 304, 405, 651, 17, 19393, 19393, 6683, 185, 185, 15013, 25, 2147, 748, 13024, 473, 207, 17, 15, 15, 20, 11, 931, 245, 6158, 833, 25, 4314, 62, 304, 405, 651, 17, 17, 15, 15, 20, 6683, 2147, 748, 13024, 473, 207, 16, 24, 22, 17, 11, 931, 245, 6158, 833, 25, 4314, 62, 304, 405, 440, 17, 16, 24, 22, 17, 2770, 2147, 748, 13024, 473, 207, 17, 15, 16, 20, 11, 931, 245, 6158, 833, 25, 4314, 62, 304, 405, 440, 17, 17, 15, 16, 20, 2770, 185, 185, 2269, 18912, 12780, 967, 7688, 10115, 285, 4934, 20976, 29980, 13, 185, 185, 15013, 10481, 10413, 6074, 285, 5975, 547, 3130, 7486, 185, 4397, 25, 185, 1, 2628, 317, 254, 1093, 3472, 254, 10851, 14204, 412, 9961, 463, 2634, 18605, 429, 1712, 1956, 185, 6231, 547, 25, 185, 7507, 21234, 7, 462, 82, 62, 5816, 8, 7432, 2612, 11294, 2547, 62, 1523, 62, 5816, 405, 651, 43, 378, 14204, 412, 9961, 4057, 185, 185, 4397, 25, 185, 1, 15575, 9474, 417, 6288, 279, 254, 1967, 280, 8700, 1956, 185, 6231, 547, 25, 185, 7507, 2192, 62, 1523, 7432, 2547, 11294, 1967, 405, 651, 9517, 351, 8092, 4057, 185, 185, 4397, 25, 185, 1, 15575, 2547, 658, 254, 7495, 1594, 280, 2547, 1936, 17396, 279, 274, 2292, 2612, 1956, 185, 6231, 547, 25, 185, 7507, 2547, 62, 356, 26321, 335, 62, 11507, 7432, 746, 62, 16204, 25554, 9784, 2547, 62, 788, 17396, 62, 11507, 22187, 34, 29731, 207, 16, 26, 185, 185, 4397, 25, 185, 1, 15575, 9474, 773, 16316, 1321, 207, 16, 24, 22, 24, 1956, 185, 6231, 547, 25, 185, 7507, 2192, 62, 1523, 7432, 2547, 11294, 1008, 62, 10246, 271, 8086, 16, 24, 22, 24, 26, 185, 185, 4397, 25, 185, 1, 13000, 254, 13164, 339, 3467, 959, 8402, 1712, 14009, 7037, 279, 254, 207, 17, 15, 15, 23, 4314, 876, 185, 6231, 547, 25, 185, 7507, 21234, 7, 462, 82, 62, 5816, 567, 265, 1267, 62, 11507, 8, 4958, 10919, 62, 7541, 7432, 2612, 11294, 2547, 62, 1523, 62, 5816, 405, 651, 33, 11885, 339, 3467, 959, 6, 5584, 4314, 62, 304, 405, 651, 17, 17, 15, 15, 23, 4057, 185, 185, 7605, 387, 885, 254, 5975, 547, 5151, 3651, 3250, 457, 5975, 547, 25, 285, 637, 746, 2422, 11, 533, 441, 2816, 274, 11543, 280, 254, 5151, 13, 4195, 8297, 274, 5975, 547, 5151, 327, 254, 1884, 2664, 3092, 13, 17858, 25, 185, 2808, 1311, 3212, 3472, 1213, 254, 11738, 21915, 82, 8129, 2310, 254, 207, 16, 24, 24, 21, 4314, 30, 185, 6231, 547, 25, 185, 7507, 20861, 7, 462, 82, 8, 4958, 3212, 62, 12168, 7432, 334, 11789, 265, 1267, 62, 5816, 4958, 265, 1267, 7432, 2612, 11294, 2547, 62, 356, 26321, 335, 62, 5816, 405, 651, 3388, 40, 6, 5584, 4314, 62, 304, 405, 651, 17, 16, 24, 24, 21, 6, 8763, 2738, 14177, 11789, 265, 1267, 62, 11507, 4958, 265, 1267, 7432, 2612, 11294, 2547, 62, 356, 26321, 335, 62, 11507, 405, 651, 3388, 40, 6, 5584, 4314, 62, 304, 405, 651, 17, 16, 24, 24, 21, 6, 4363, 32022], 'attention_mask': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'labels': [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 62, 16204, 25554, 9784, 2547, 62, 788, 17396, 62, 11507, 22187, 34, 29731, 207, 16, 26, 185, 185, 4397, 25, 185, 1, 15575, 9474, 773, 16316, 1321, 207, 16, 24, 22, 24, 1956, 185, 6231, 547, 25, 185, 7507, 2192, 62, 1523, 7432, 2547, 11294, 1008, 62, 10246, 271, 8086, 16, 24, 22, 24, 26, 185, 185, 4397, 25, 185, 1, 13000, 254, 13164, 339, 3467, 959, 8402, 1712, 14009, 7037, 279, 254, 207, 17, 15, 15, 23, 4314, 876, 185, 6231, 547, 25, 185, 7507, 21234, 7, 462, 82, 62, 5816, 567, 265, 1267, 62, 11507, 8, 4958, 10919, 62, 7541, 7432, 2612, 11294, 2547, 62, 1523, 62, 5816, 405, 651, 33, 11885, 339, 3467, 959, 6, 5584, 4314, 62, 304, 405, 651, 17, 17, 15, 15, 23, 4057, 185, 185, 7605, 387, 885, 254, 5975, 547, 5151, 3651, 3250, 457, 5975, 547, 25, 285, 637, 746, 2422, 11, 533, 441, 2816, 274, 11543, 280, 254, 5151, 13, 4195, 8297, 274, 5975, 547, 5151, 327, 254, 1884, 2664, 3092, 13, 17858, 25, 185, 2808, 1311, 3212, 3472, 1213, 254, 11738, 21915, 82, 8129, 2310, 254, 207, 16, 24, 24, 21, 4314, 30, 185, 6231, 547, 25, 185, 7507, 20861, 7, 462, 82, 8, 4958, 3212, 62, 12168, 7432, 334, 11789, 265, 1267, 62, 5816, 4958, 265, 1267, 7432, 2612, 11294, 2547, 62, 356, 26321, 335, 62, 5816, 405, 651, 3388, 40, 6, 5584, 4314, 62, 304, 405, 651, 17, 16, 24, 24, 21, 6, 8763, 2738, 14177, 11789, 265, 1267, 62, 11507, 4958, 265, 1267, 7432, 2612, 11294, 2547, 62, 356, 26321, 335, 62, 11507, 405, 651, 3388, 40, 6, 5584, 4314, 62, 304, 405, 651, 17, 16, 24, 24, 21, 6, 4363, 32022]}\n"
287
  ]
288
  },
289
  {
 
347
  "print(len(tokenizer)) \n",
348
  "\n",
349
  "tokenizer.truncation_side = \"left\"\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350
  "\n",
351
+ "def format_deepseek_chat(example, tokenizer, special_token=\"<|endofsql|>\"):\n",
352
+ " # Manually build the prompt as one flat string\n",
353
+ " prompt = f\"{input_prompt}{example['natural_query']}\\n\"\n",
354
+ " completion = f\"SQLite:\\n{example['sql_query']}{special_token}\"\n",
355
  "\n",
356
+ " full_text = prompt + completion\n",
 
 
 
 
 
 
 
 
 
 
 
357
  " tokenized = tokenizer(\n",
358
+ " full_text,\n",
 
359
  " truncation=True,\n",
360
+ " padding=\"max_length\",\n",
361
+ " max_length=3156, # or whatever your model can handle\n",
362
  " )\n",
363
  "\n",
364
+ " # Mask out prompt tokens in the labels\n",
365
+ " prompt_len = len(tokenizer(prompt, truncation=True)[\"input_ids\"])\n",
366
+ " labels = tokenized[\"input_ids\"][:]\n",
367
+ " labels[:prompt_len] = [-100] * prompt_len\n",
368
+ " tokenized[\"labels\"] = labels\n",
369
+ "\n",
370
  " return tokenized\n",
 
 
 
371
  "\n",
372
+ "# Build dataset dict\n",
373
+ "dataset_dict = {\n",
374
+ " \"natural_query\": df[\"natural_query\"].tolist(),\n",
375
+ " \"sql_query\": df[\"sql_query\"].tolist(),\n",
376
+ "}\n",
377
+ "\n",
378
+ "# Create HuggingFace Dataset\n",
379
+ "dataset = Dataset.from_dict(dataset_dict)\n",
380
+ "\n",
381
+ "# Apply formatting\n",
382
+ "tokenized_dataset = dataset.map(\n",
383
+ " lambda x: format_deepseek_chat(x, tokenizer),\n",
384
+ " remove_columns=[\"natural_query\", \"sql_query\"]\n",
385
+ ")\n",
386
  "\n",
387
  "# Split into train/validation\n",
388
  "split = int(0.9 * len(tokenized_dataset)) # 90% train, 10% validation\n",
 
392
  "print(len(train_dataset))\n",
393
  "print(len(val_dataset))\n",
394
  "\n",
395
+ "for v in val_dataset:\n",
396
  " print(v)\n",
397
  " break"
398
  ]
 
406
  },
407
  {
408
  "cell_type": "code",
409
+ "execution_count": 3,
410
  "metadata": {},
411
  "outputs": [
412
  {
 
451
  },
452
  {
453
  "cell_type": "code",
454
+ "execution_count": 4,
455
  "metadata": {},
456
  "outputs": [
457
  {
 
460
  "text": [
461
  "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\training_args.py:1611: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
462
  " warnings.warn(\n",
463
+ "C:\\Users\\Dean\\AppData\\Local\\Temp\\ipykernel_21244\\719275035.py:21: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
464
  " trainer = Trainer(\n",
465
  "No label_names provided for model class `PeftModelForCausalLM`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.\n"
466
  ]
 
468
  ],
469
  "source": [
470
  "training_args = TrainingArguments(\n",
471
+ " output_dir=\"./fine-tuned-model-8-diff\",\n",
472
  " evaluation_strategy=\"epoch\", # Evaluate at the end of each epoch\n",
473
  " save_strategy=\"epoch\", # Save model every epoch\n",
474
  " per_device_train_batch_size=1, # LoRA allows higher batch size\n",
475
  " per_device_eval_batch_size=1,\n",
476
  " gradient_accumulation_steps=16,\n",
477
+ " num_train_epochs=5, # Increase if needed\n",
478
  " learning_rate=4e-5, # Higher LR since we're only training LoRA layers\n",
479
  " weight_decay=0.01,\n",
480
  " logging_steps=50, # Print loss every 50 steps\n",
 
506
  },
507
  {
508
  "cell_type": "code",
509
+ "execution_count": 5,
510
  "metadata": {},
511
  "outputs": [
512
  {
513
  "name": "stderr",
514
  "output_type": "stream",
515
  "text": [
516
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\integrations\\sdpa_attention.py:54: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\builder\\windows\\pytorch\\aten\\src\\ATen\\native\\transformers\\cuda\\sdp_utils.cpp:555.)\n",
517
+ " attn_output = torch.nn.functional.scaled_dot_product_attention(\n",
518
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
519
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
520
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
521
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n"
522
+ ]
523
+ },
524
+ {
525
+ "data": {
526
+ "text/html": [
527
+ "\n",
528
+ " <div>\n",
529
+ " \n",
530
+ " <progress value='290' max='290' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
531
+ " [290/290 22:37:10, Epoch 4/5]\n",
532
+ " </div>\n",
533
+ " <table border=\"1\" class=\"dataframe\">\n",
534
+ " <thead>\n",
535
+ " <tr style=\"text-align: left;\">\n",
536
+ " <th>Epoch</th>\n",
537
+ " <th>Training Loss</th>\n",
538
+ " <th>Validation Loss</th>\n",
539
+ " </tr>\n",
540
+ " </thead>\n",
541
+ " <tbody>\n",
542
+ " <tr>\n",
543
+ " <td>1</td>\n",
544
+ " <td>0.760600</td>\n",
545
+ " <td>0.240836</td>\n",
546
+ " </tr>\n",
547
+ " <tr>\n",
548
+ " <td>2</td>\n",
549
+ " <td>0.231600</td>\n",
550
+ " <td>0.168676</td>\n",
551
+ " </tr>\n",
552
+ " <tr>\n",
553
+ " <td>3</td>\n",
554
+ " <td>0.169500</td>\n",
555
+ " <td>0.160126</td>\n",
556
+ " </tr>\n",
557
+ " <tr>\n",
558
+ " <td>4</td>\n",
559
+ " <td>0.147100</td>\n",
560
+ " <td>0.157271</td>\n",
561
+ " </tr>\n",
562
+ " </tbody>\n",
563
+ "</table><p>"
564
+ ],
565
+ "text/plain": [
566
+ "<IPython.core.display.HTML object>"
567
+ ]
568
+ },
569
+ "metadata": {},
570
+ "output_type": "display_data"
571
+ },
572
+ {
573
+ "name": "stderr",
574
+ "output_type": "stream",
575
+ "text": [
576
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\peft\\utils\\save_and_load.py:250: UserWarning: Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning.\n",
577
+ " warnings.warn(\n",
578
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
579
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
580
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
581
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
582
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\peft\\utils\\save_and_load.py:250: UserWarning: Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning.\n",
583
+ " warnings.warn(\n",
584
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
585
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
586
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
587
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
588
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\peft\\utils\\save_and_load.py:250: UserWarning: Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning.\n",
589
+ " warnings.warn(\n",
590
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
591
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
592
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
593
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
594
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\peft\\utils\\save_and_load.py:250: UserWarning: Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning.\n",
595
+ " warnings.warn(\n",
596
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
597
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
598
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
599
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
600
+ "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\peft\\utils\\save_and_load.py:250: UserWarning: Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning.\n",
601
+ " warnings.warn(\n",
602
  "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\peft\\tuners\\lora\\bnb.py:85: UserWarning: Merge lora module to 8-bit linear may get different generations due to rounding errors.\n",
603
  " warnings.warn(\n"
604
  ]
 
606
  {
607
  "data": {
608
  "text/plain": [
609
+ "('./fine-tuned-model-8-diff\\\\tokenizer_config.json',\n",
610
+ " './fine-tuned-model-8-diff\\\\special_tokens_map.json',\n",
611
+ " './fine-tuned-model-8-diff\\\\tokenizer.json')"
612
  ]
613
  },
614
+ "execution_count": 5,
615
  "metadata": {},
616
  "output_type": "execute_result"
617
  }
618
  ],
619
  "source": [
620
  "# Run training\n",
621
+ "trainer.train()\n",
622
  "\n",
623
  "# Merge LoRA adapters with the base model before saving\n",
624
  "model = model.merge_and_unload()\n",
625
+ "model.save_pretrained(\"./fine-tuned-model-8-diff\")\n",
626
+ "tokenizer.save_pretrained(\"./fine-tuned-model-8-diff\")"
627
  ]
628
  },
629
  {
 
635
  },
636
  {
637
  "cell_type": "code",
638
+ "execution_count": 6,
639
  "metadata": {},
640
  "outputs": [
641
  {
642
  "name": "stderr",
643
  "output_type": "stream",
644
  "text": [
645
+ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
646
+ "Setting `pad_token_id` to `eos_token_id`:32022 for open-end generation.\n",
647
  "The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
648
  "c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\bitsandbytes\\autograd\\_functions.py:315: UserWarning: MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization\n",
649
  " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n"
 
660
  "\n",
661
  "Explanation: The AVG() function is used to calculate the average of a set of values. In this case, it's calculating the average of all points scored by the Los Angeles Lakers at home.\n",
662
  "\n",
663
+ "Note: The query assumes that the pts_home column in the game table represents the total points scored by the home team. If the column name is different, you'll need to adjust the query accordingly.\n",
664
  "\n",
665
+ "Also, this query does not take into account the season_id filter, which is a requirement in the original question. If you want to include the season filter, you'll need to adjust the query accordingly.\n",
 
666
  "\n",
667
+ "For example, if you want to find the average points scored by the Los Angeles Lakers in the 2008 season, you would use:\n",
 
 
668
  "\n",
669
+ "SQLite:\n",
670
+ "SELECT AVG(pts_home) FROM game WHERE team_name_home = 'Los Angeles Lakers' AND season_\n"
671
  ]
672
  }
673
  ],
674
  "source": [
675
+ "model = AutoModelForCausalLM.from_pretrained(\"./fine-tuned-model-8-diff\", torch_dtype=torch.bfloat16, device_map=device)\n",
676
+ "tokenizer = AutoTokenizer.from_pretrained(\"./fine-tuned-model-8-diff\")\n",
677
  "\n",
678
  "# Prepare query with the same prompt\n",
679
  "input_text = \"How many points to the Los Angeles Lakers average at home?\"\n",
 
690
  "\n",
691
  "print(\"Generated SQL:\", query_output)"
692
  ]
693
+ },
694
+ {
695
+ "cell_type": "markdown",
696
+ "metadata": {},
697
+ "source": [
698
+ "## Save validation and test set to disk"
699
+ ]
700
+ },
701
+ {
702
+ "cell_type": "code",
703
+ "execution_count": 7,
704
+ "metadata": {},
705
+ "outputs": [
706
+ {
707
+ "name": "stderr",
708
+ "output_type": "stream",
709
+ "text": [
710
+ "Saving the dataset (1/1 shards): 100%|██████████| 939/939 [00:00<00:00, 18233.32 examples/s]\n",
711
+ "Saving the dataset (1/1 shards): 100%|██████████| 105/105 [00:00<00:00, 11667.82 examples/s]\n"
712
+ ]
713
+ }
714
+ ],
715
+ "source": [
716
+ "train_dataset.save_to_disk(\"train.hf\")\n",
717
+ "val_dataset.save_to_disk(\"val.hf\")"
718
+ ]
719
  }
720
  ],
721
  "metadata": {
train.hf/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dbea7350b9ce541dbc1abb69cc6383d1990f425dbf0e0a6300107f0f395dad0
3
+ size 38537696
train.hf/dataset_info.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "input_ids": {
6
+ "feature": {
7
+ "dtype": "int32",
8
+ "_type": "Value"
9
+ },
10
+ "_type": "Sequence"
11
+ },
12
+ "attention_mask": {
13
+ "feature": {
14
+ "dtype": "int8",
15
+ "_type": "Value"
16
+ },
17
+ "_type": "Sequence"
18
+ },
19
+ "labels": {
20
+ "feature": {
21
+ "dtype": "int64",
22
+ "_type": "Value"
23
+ },
24
+ "_type": "Sequence"
25
+ }
26
+ },
27
+ "homepage": "",
28
+ "license": ""
29
+ }
train.hf/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "3046619c9c688db0",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
val.hf/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ad8997fa6cd065bb65982a1aa7004a7decbb8a6bfeb85aae7aeadd49c292629
3
+ size 4310336
val.hf/dataset_info.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "input_ids": {
6
+ "feature": {
7
+ "dtype": "int32",
8
+ "_type": "Value"
9
+ },
10
+ "_type": "Sequence"
11
+ },
12
+ "attention_mask": {
13
+ "feature": {
14
+ "dtype": "int8",
15
+ "_type": "Value"
16
+ },
17
+ "_type": "Sequence"
18
+ },
19
+ "labels": {
20
+ "feature": {
21
+ "dtype": "int64",
22
+ "_type": "Value"
23
+ },
24
+ "_type": "Sequence"
25
+ }
26
+ },
27
+ "homepage": "",
28
+ "license": ""
29
+ }
val.hf/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "a61ff11400c67304",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }