from transformers import AutoTokenizer, AutoModelForCausalLM import torch import time device = torch.device("cuda" if torch.cuda.is_available() else "cpu") """ tokenizer = AutoTokenizer.from_pretrained(".") model = AutoModelForCausalLM.from_pretrained(".").cuda() input_text = "#If I have a SQL table called people with columns 'name, date, count' generate a SQL query to get all peoples names" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) """ tokenizer = AutoTokenizer.from_pretrained("./deepseek-coder-1.3b-instruct") model = AutoModelForCausalLM.from_pretrained("./deepseek-coder-1.3b-instruct", torch_dtype=torch.bfloat16, device_map=device) #.cuda() #tokenizer = AutoTokenizer.from_pretrained("../deepseek-coder-7b-instruct-v1.5") #model = AutoModelForCausalLM.from_pretrained("../deepseek-coder-7b-instruct-v1.5").cuda() messages=[ { 'role': 'user', 'content': "If I have a SQL table called people with columns 'name, date, count' generate a SQL query to get all peoples names. Output only the SQL query no other text"} ] start_time = time.time() inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) # tokenizer.eos_token_id is the id of <|EOT|> token outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) end_time = time.time() print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) print("Execution time:") print(end_time - start_time)