--- tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: w2v2-bert-urdu results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ur split: test[:100] args: ur metrics: - type: wer value: 0.3300546448087432 name: Wer --- # w2v2-bert-urdu This model was trained from scratch on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4246 - Wer: 0.3301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.8145 | 0.1695 | 50 | 0.4620 | 0.3421 | | 0.4364 | 0.3390 | 100 | 0.3969 | 0.2874 | | 0.418 | 0.5085 | 150 | 0.3697 | 0.2820 | | 0.402 | 0.6780 | 200 | 0.3627 | 0.2842 | | 0.3698 | 0.8475 | 250 | 0.3314 | 0.2710 | | 0.3779 | 1.0169 | 300 | 0.3292 | 0.2852 | | 0.3167 | 1.1864 | 350 | 0.3230 | 0.2820 | | 0.3578 | 1.3559 | 400 | 0.3825 | 0.2940 | | 0.4189 | 1.5254 | 450 | 0.4225 | 0.3104 | | 0.4803 | 1.6949 | 500 | 0.4248 | 0.3311 | | 0.4612 | 1.8644 | 550 | 0.4246 | 0.3301 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1