File size: 3,541 Bytes
b7b4232
4bad052
 
74a7b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b4232
74a7b78
 
460c3b9
b7b4232
4bad052
 
 
 
 
 
 
 
 
5f1813e
 
 
 
 
4bad052
 
 
 
 
 
 
 
4c372be
 
 
 
 
 
 
4bad052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1813e
4bad052
 
 
 
 
5f1813e
4bad052
 
 
 
 
74a7b78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
pipeline_tag: translation
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: apache-2.0
tags:
- arXiv:2010.15535
- PyTorch
---

This is a [COMET](https://github.com/Unbabel/COMET) evaluation model: It receives a triplet with (source sentence, translation, reference translation) and returns a score that reflects the quality of the translation compared to both source and reference.

**NOTE:** This model was recently replaced by an improved version [wmt22-comet-da](https://huggingface.co/Unbabel/wmt22-comet-da)

# Paper

[Unbabel’s Participation in the WMT20 Metrics Shared Task](https://aclanthology.org/2020.wmt-1.101) (Rei et al., WMT 2020)

# License

Apache-2.0

# Usage (unbabel-comet)

Using this model requires unbabel-comet to be installed:

```bash
pip install --upgrade pip  # ensures that pip is current 
pip install unbabel-comet
```

Then you can use it through comet CLI:

```bash
comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model Unbabel/wmt22-comet-da
```

Or using Python:

```python
from comet import download_model, load_from_checkpoint

model_path = download_model("Unbabel/wmt20-comet-da")
model = load_from_checkpoint(model_path)
data = [
    {
        "src": "Dem Feuer konnte Einhalt geboten werden",
        "mt": "The fire could be stopped",
        "ref": "They were able to control the fire."
    },
    {
        "src": "Schulen und Kindergärten wurden eröffnet.",
        "mt": "Schools and kindergartens were open",
        "ref": "Schools and kindergartens opened"
    }
]
model_output = model.predict(data, batch_size=8, gpus=1)
print (model_output)
```

# Intended uses

Our model is intented to be used for **MT evaluation**. 

Given a a triplet with (source sentence, translation, reference translation) outputs a single score. This score is unbounded but typically falls between -1 and 1 where 1 reflects a perfect translation.

# Languages Covered:

This model builds on top of XLM-R which cover the following languages:

Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish.

Thus, results for language pairs containing uncovered languages are unreliable!