sh-zam commited on
Commit
ca26495
·
verified ·
1 Parent(s): 16c6b5e

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. README.md +4 -194
  2. adapter_model.bin +3 -0
  3. config.json +71 -0
  4. non_lora_trainables.bin +3 -0
  5. trainer_state.json +1890 -0
README.md CHANGED
@@ -1,199 +1,9 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ library_name: peft
 
3
  ---
4
+ ## Training procedure
5
 
6
+ ### Framework versions
7
 
 
8
 
9
+ - PEFT 0.5.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcd6b99f5fd9b7919dc4cbaee8e6533961673f09ec72ca77d8362b1c63b444cc
3
+ size 639787082
config.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "llava-hf/llava-1.5-7b-hf",
3
+ "architectures": [
4
+ "LlavaForConditionalGeneration"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "ignore_index": -100,
14
+ "image_aspect_ratio": "pad",
15
+ "image_token_index": 32000,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 11008,
18
+ "max_position_embeddings": 2048,
19
+ "mm_hidden_size": 1024,
20
+ "mm_patch_merge_type": "flat",
21
+ "mm_projector_lr": 2e-05,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_use_im_patch_token": false,
24
+ "mm_use_im_start_end": false,
25
+ "mm_vision_select_feature": "patch",
26
+ "mm_vision_select_layer": -2,
27
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
28
+ "model_type": "llava_llama",
29
+ "num_attention_heads": 32,
30
+ "num_hidden_layers": 32,
31
+ "num_key_value_heads": 32,
32
+ "pad_token_id": 32001,
33
+ "pretraining_tp": 1,
34
+ "projector_hidden_act": "gelu",
35
+ "rms_norm_eps": 1e-06,
36
+ "rope_scaling": null,
37
+ "rope_theta": 10000.0,
38
+ "text_config": {
39
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
40
+ "architectures": [
41
+ "LlamaForCausalLM"
42
+ ],
43
+ "max_position_embeddings": 4096,
44
+ "model_type": "llama",
45
+ "rms_norm_eps": 1e-05,
46
+ "torch_dtype": "float16",
47
+ "vocab_size": 32064
48
+ },
49
+ "tie_word_embeddings": false,
50
+ "tokenizer_model_max_length": 2048,
51
+ "tokenizer_padding_side": "right",
52
+ "torch_dtype": "float16",
53
+ "transformers_version": "4.37.2",
54
+ "tune_mm_mlp_adapter": false,
55
+ "use_cache": true,
56
+ "use_mm_proj": true,
57
+ "vision_config": {
58
+ "hidden_size": 1024,
59
+ "image_size": 336,
60
+ "intermediate_size": 4096,
61
+ "model_type": "clip_vision_model",
62
+ "num_attention_heads": 16,
63
+ "num_hidden_layers": 24,
64
+ "patch_size": 14,
65
+ "projection_dim": 768,
66
+ "vocab_size": 32000
67
+ },
68
+ "vision_feature_layer": -2,
69
+ "vision_feature_select_strategy": "default",
70
+ "vocab_size": 32064
71
+ }
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d6f71e844de54ca47720d30675ea9c43c9858ca4c0f6836e8c8bc05bddbecf9
3
+ size 41961648
trainer_state.json ADDED
@@ -0,0 +1,1890 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 310,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 11.2153,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 4e-05,
20
+ "loss": 11.2101,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 6e-05,
26
+ "loss": 11.1907,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 8e-05,
32
+ "loss": 11.0346,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 0.0001,
38
+ "loss": 10.6171,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.00012,
44
+ "loss": 10.0148,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.00014,
50
+ "loss": 9.4405,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.03,
55
+ "learning_rate": 0.00016,
56
+ "loss": 9.7438,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 0.00018,
62
+ "loss": 8.707,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0002,
68
+ "loss": 8.8771,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.04,
73
+ "learning_rate": 0.00019999451693655123,
74
+ "loss": 8.7858,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 0.00019997806834748456,
80
+ "loss": 8.511,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.00019995065603657316,
86
+ "loss": 8.2111,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.05,
91
+ "learning_rate": 0.00019991228300988585,
92
+ "loss": 8.0204,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 0.0001998629534754574,
98
+ "loss": 7.9454,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 0.00019980267284282717,
104
+ "loss": 7.8055,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 0.00019973144772244582,
110
+ "loss": 7.6032,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 0.00019964928592495045,
116
+ "loss": 7.7403,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 0.00019955619646030802,
122
+ "loss": 7.7085,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 0.00019945218953682734,
128
+ "loss": 7.5279,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 0.00019933727656003963,
134
+ "loss": 7.2119,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 0.0001992114701314478,
140
+ "loss": 6.9685,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 0.00019907478404714436,
146
+ "loss": 6.8322,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.08,
151
+ "learning_rate": 0.00019892723329629887,
152
+ "loss": 6.7232,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 0.00019876883405951377,
158
+ "loss": 6.7616,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 0.0001985996037070505,
164
+ "loss": 6.5955,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.09,
169
+ "learning_rate": 0.0001984195607969242,
170
+ "loss": 6.4523,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 0.0001982287250728689,
176
+ "loss": 6.3178,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 0.00019802711746217218,
182
+ "loss": 6.371,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.1,
187
+ "learning_rate": 0.00019781476007338058,
188
+ "loss": 6.4004,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 0.00019759167619387476,
194
+ "loss": 6.2502,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.1,
199
+ "learning_rate": 0.00019735789028731604,
200
+ "loss": 6.1807,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.11,
205
+ "learning_rate": 0.00019711342799096361,
206
+ "loss": 6.1244,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 0.0001968583161128631,
212
+ "loss": 6.0723,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "learning_rate": 0.00019659258262890683,
218
+ "loss": 5.8887,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.12,
223
+ "learning_rate": 0.00019631625667976583,
224
+ "loss": 5.8987,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.12,
229
+ "learning_rate": 0.0001960293685676943,
230
+ "loss": 5.5855,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.12,
235
+ "learning_rate": 0.00019573194975320673,
236
+ "loss": 5.7129,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.13,
241
+ "learning_rate": 0.0001954240328516277,
242
+ "loss": 5.8263,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.13,
247
+ "learning_rate": 0.00019510565162951537,
248
+ "loss": 5.7092,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.13,
253
+ "learning_rate": 0.0001947768410009586,
254
+ "loss": 5.6344,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.14,
259
+ "learning_rate": 0.00019443763702374812,
260
+ "loss": 5.5662,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.14,
265
+ "learning_rate": 0.00019408807689542257,
266
+ "loss": 5.5991,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.14,
271
+ "learning_rate": 0.00019372819894918915,
272
+ "loss": 5.3797,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.15,
277
+ "learning_rate": 0.00019335804264972018,
278
+ "loss": 5.4445,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.15,
283
+ "learning_rate": 0.00019297764858882514,
284
+ "loss": 5.4585,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.15,
289
+ "learning_rate": 0.0001925870584809995,
290
+ "loss": 5.2898,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.15,
295
+ "learning_rate": 0.00019218631515885006,
296
+ "loss": 5.196,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.16,
301
+ "learning_rate": 0.00019177546256839812,
302
+ "loss": 5.2029,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.16,
307
+ "learning_rate": 0.0001913545457642601,
308
+ "loss": 5.3546,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.16,
313
+ "learning_rate": 0.00019092361090470688,
314
+ "loss": 5.2278,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.17,
319
+ "learning_rate": 0.00019048270524660196,
320
+ "loss": 5.2661,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.17,
325
+ "learning_rate": 0.00019003187714021938,
326
+ "loss": 5.0926,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.17,
331
+ "learning_rate": 0.0001895711760239413,
332
+ "loss": 5.2142,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.18,
337
+ "learning_rate": 0.0001891006524188368,
338
+ "loss": 5.1078,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.18,
343
+ "learning_rate": 0.00018862035792312147,
344
+ "loss": 5.1481,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.18,
349
+ "learning_rate": 0.0001881303452064992,
350
+ "loss": 5.1971,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.19,
355
+ "learning_rate": 0.00018763066800438636,
356
+ "loss": 5.1135,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.19,
361
+ "learning_rate": 0.00018712138111201895,
362
+ "loss": 5.1675,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.19,
367
+ "learning_rate": 0.00018660254037844388,
368
+ "loss": 4.9891,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.2,
373
+ "learning_rate": 0.0001860742027003944,
374
+ "loss": 4.9451,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.2,
379
+ "learning_rate": 0.00018553642601605068,
380
+ "loss": 4.8872,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.2,
385
+ "learning_rate": 0.00018498926929868642,
386
+ "loss": 5.0473,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.21,
391
+ "learning_rate": 0.00018443279255020152,
392
+ "loss": 4.9591,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.21,
397
+ "learning_rate": 0.00018386705679454242,
398
+ "loss": 4.8218,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.21,
403
+ "learning_rate": 0.00018329212407100994,
404
+ "loss": 4.8672,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.22,
409
+ "learning_rate": 0.00018270805742745617,
410
+ "loss": 4.9517,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.22,
415
+ "learning_rate": 0.00018211492091337042,
416
+ "loss": 4.7033,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.22,
421
+ "learning_rate": 0.00018151277957285543,
422
+ "loss": 4.6816,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.23,
427
+ "learning_rate": 0.00018090169943749476,
428
+ "loss": 4.6706,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.23,
433
+ "learning_rate": 0.00018028174751911146,
434
+ "loss": 4.8965,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.23,
439
+ "learning_rate": 0.00017965299180241963,
440
+ "loss": 4.5277,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.24,
445
+ "learning_rate": 0.00017901550123756906,
446
+ "loss": 4.709,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.24,
451
+ "learning_rate": 0.000178369345732584,
452
+ "loss": 4.5827,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.24,
457
+ "learning_rate": 0.0001777145961456971,
458
+ "loss": 4.526,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.25,
463
+ "learning_rate": 0.00017705132427757895,
464
+ "loss": 4.4775,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.25,
469
+ "learning_rate": 0.00017637960286346425,
470
+ "loss": 4.389,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.25,
475
+ "learning_rate": 0.00017569950556517566,
476
+ "loss": 4.5912,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.25,
481
+ "learning_rate": 0.00017501110696304596,
482
+ "loss": 4.3966,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.26,
487
+ "learning_rate": 0.00017431448254773944,
488
+ "loss": 4.3832,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.26,
493
+ "learning_rate": 0.00017360970871197346,
494
+ "loss": 4.3049,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.26,
499
+ "learning_rate": 0.00017289686274214118,
500
+ "loss": 4.5175,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.27,
505
+ "learning_rate": 0.00017217602280983623,
506
+ "loss": 4.4391,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.27,
511
+ "learning_rate": 0.00017144726796328034,
512
+ "loss": 4.359,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.27,
517
+ "learning_rate": 0.00017071067811865476,
518
+ "loss": 4.4578,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.28,
523
+ "learning_rate": 0.00016996633405133655,
524
+ "loss": 4.2509,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.28,
529
+ "learning_rate": 0.0001692143173870407,
530
+ "loss": 4.213,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.28,
535
+ "learning_rate": 0.00016845471059286887,
536
+ "loss": 4.3808,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.29,
541
+ "learning_rate": 0.00016768759696826608,
542
+ "loss": 4.2431,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.29,
547
+ "learning_rate": 0.00016691306063588583,
548
+ "loss": 4.1752,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.29,
553
+ "learning_rate": 0.00016613118653236518,
554
+ "loss": 4.1288,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.3,
559
+ "learning_rate": 0.00016534206039901057,
560
+ "loss": 4.2743,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.3,
565
+ "learning_rate": 0.00016454576877239507,
566
+ "loss": 4.1326,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.3,
571
+ "learning_rate": 0.000163742398974869,
572
+ "loss": 4.2462,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.31,
577
+ "learning_rate": 0.00016293203910498376,
578
+ "loss": 4.1801,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.31,
583
+ "learning_rate": 0.00016211477802783103,
584
+ "loss": 4.2519,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.31,
589
+ "learning_rate": 0.00016129070536529766,
590
+ "loss": 4.1227,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.32,
595
+ "learning_rate": 0.0001604599114862375,
596
+ "loss": 4.096,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.32,
601
+ "learning_rate": 0.0001596224874965616,
602
+ "loss": 4.1539,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.32,
607
+ "learning_rate": 0.00015877852522924732,
608
+ "loss": 4.1399,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.33,
613
+ "learning_rate": 0.0001579281172342679,
614
+ "loss": 4.0179,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.33,
619
+ "learning_rate": 0.0001570713567684432,
620
+ "loss": 4.2023,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.33,
625
+ "learning_rate": 0.00015620833778521307,
626
+ "loss": 4.017,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.34,
631
+ "learning_rate": 0.00015533915492433443,
632
+ "loss": 4.0196,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.34,
637
+ "learning_rate": 0.00015446390350150273,
638
+ "loss": 4.0342,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.34,
643
+ "learning_rate": 0.00015358267949789966,
644
+ "loss": 4.2113,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.35,
649
+ "learning_rate": 0.00015269557954966778,
650
+ "loss": 3.9744,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.35,
655
+ "learning_rate": 0.00015180270093731303,
656
+ "loss": 3.9296,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.35,
661
+ "learning_rate": 0.00015090414157503714,
662
+ "loss": 4.1932,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.35,
667
+ "learning_rate": 0.00015000000000000001,
668
+ "loss": 3.9307,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.36,
673
+ "learning_rate": 0.00014909037536151409,
674
+ "loss": 4.1181,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.36,
679
+ "learning_rate": 0.00014817536741017152,
680
+ "loss": 4.0439,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.36,
685
+ "learning_rate": 0.00014725507648690543,
686
+ "loss": 4.0253,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.37,
691
+ "learning_rate": 0.00014632960351198618,
692
+ "loss": 4.0668,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.37,
697
+ "learning_rate": 0.00014539904997395468,
698
+ "loss": 3.9828,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.37,
703
+ "learning_rate": 0.00014446351791849276,
704
+ "loss": 4.0319,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.38,
709
+ "learning_rate": 0.00014352310993723277,
710
+ "loss": 3.9696,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.38,
715
+ "learning_rate": 0.00014257792915650728,
716
+ "loss": 3.9411,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.38,
721
+ "learning_rate": 0.00014162807922604012,
722
+ "loss": 4.0313,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.39,
727
+ "learning_rate": 0.00014067366430758004,
728
+ "loss": 3.9115,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.39,
733
+ "learning_rate": 0.00013971478906347806,
734
+ "loss": 3.941,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.39,
739
+ "learning_rate": 0.0001387515586452103,
740
+ "loss": 3.975,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.4,
745
+ "learning_rate": 0.00013778407868184672,
746
+ "loss": 3.7062,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.4,
751
+ "learning_rate": 0.00013681245526846783,
752
+ "loss": 3.8805,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.4,
757
+ "learning_rate": 0.00013583679495453,
758
+ "loss": 3.7612,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.41,
763
+ "learning_rate": 0.00013485720473218154,
764
+ "loss": 3.7326,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.41,
769
+ "learning_rate": 0.00013387379202452917,
770
+ "loss": 3.8042,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.41,
775
+ "learning_rate": 0.00013288666467385833,
776
+ "loss": 3.9848,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.42,
781
+ "learning_rate": 0.00013189593092980702,
782
+ "loss": 4.011,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.42,
787
+ "learning_rate": 0.00013090169943749476,
788
+ "loss": 3.8322,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.42,
793
+ "learning_rate": 0.00012990407922560868,
794
+ "loss": 3.7704,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.43,
799
+ "learning_rate": 0.00012890317969444716,
800
+ "loss": 3.8909,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.43,
805
+ "learning_rate": 0.00012789911060392294,
806
+ "loss": 3.8207,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.43,
811
+ "learning_rate": 0.00012689198206152657,
812
+ "loss": 3.8095,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.44,
817
+ "learning_rate": 0.00012588190451025207,
818
+ "loss": 3.8504,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.44,
823
+ "learning_rate": 0.0001248689887164855,
824
+ "loss": 3.6548,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.44,
829
+ "learning_rate": 0.0001238533457578581,
830
+ "loss": 3.7723,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.45,
835
+ "learning_rate": 0.00012283508701106557,
836
+ "loss": 3.6582,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.45,
841
+ "learning_rate": 0.00012181432413965428,
842
+ "loss": 3.6674,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.45,
847
+ "learning_rate": 0.00012079116908177593,
848
+ "loss": 3.9033,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.45,
853
+ "learning_rate": 0.00011976573403791262,
854
+ "loss": 3.7011,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.46,
859
+ "learning_rate": 0.00011873813145857249,
860
+ "loss": 3.8179,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.46,
865
+ "learning_rate": 0.00011770847403195834,
866
+ "loss": 3.6867,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.46,
871
+ "learning_rate": 0.00011667687467161024,
872
+ "loss": 3.6831,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.47,
877
+ "learning_rate": 0.0001156434465040231,
878
+ "loss": 3.8595,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.47,
883
+ "learning_rate": 0.00011460830285624118,
884
+ "loss": 3.721,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.47,
889
+ "learning_rate": 0.00011357155724343045,
890
+ "loss": 3.712,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.48,
895
+ "learning_rate": 0.00011253332335643043,
896
+ "loss": 3.6603,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.48,
901
+ "learning_rate": 0.00011149371504928668,
902
+ "loss": 3.6563,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.48,
907
+ "learning_rate": 0.00011045284632676536,
908
+ "loss": 3.5381,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.49,
913
+ "learning_rate": 0.00010941083133185146,
914
+ "loss": 3.7151,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.49,
919
+ "learning_rate": 0.00010836778433323158,
920
+ "loss": 3.7003,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.49,
925
+ "learning_rate": 0.00010732381971276318,
926
+ "loss": 3.8455,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.5,
931
+ "learning_rate": 0.00010627905195293135,
932
+ "loss": 3.5937,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.5,
937
+ "learning_rate": 0.0001052335956242944,
938
+ "loss": 3.5345,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.5,
943
+ "learning_rate": 0.00010418756537291996,
944
+ "loss": 3.527,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.51,
949
+ "learning_rate": 0.00010314107590781284,
950
+ "loss": 3.5617,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.51,
955
+ "learning_rate": 0.0001020942419883357,
956
+ "loss": 3.5834,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.51,
961
+ "learning_rate": 0.00010104717841162458,
962
+ "loss": 3.6394,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.52,
967
+ "learning_rate": 0.0001,
968
+ "loss": 3.4265,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.52,
973
+ "learning_rate": 9.895282158837545e-05,
974
+ "loss": 3.4816,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.52,
979
+ "learning_rate": 9.790575801166432e-05,
980
+ "loss": 3.5481,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.53,
985
+ "learning_rate": 9.685892409218717e-05,
986
+ "loss": 3.6996,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.53,
991
+ "learning_rate": 9.581243462708006e-05,
992
+ "loss": 3.6275,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.53,
997
+ "learning_rate": 9.476640437570562e-05,
998
+ "loss": 3.5595,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.54,
1003
+ "learning_rate": 9.372094804706867e-05,
1004
+ "loss": 3.4173,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.54,
1009
+ "learning_rate": 9.267618028723686e-05,
1010
+ "loss": 3.6742,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.54,
1015
+ "learning_rate": 9.163221566676847e-05,
1016
+ "loss": 3.5923,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.55,
1021
+ "learning_rate": 9.058916866814858e-05,
1022
+ "loss": 3.5414,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.55,
1027
+ "learning_rate": 8.954715367323468e-05,
1028
+ "loss": 3.7635,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.55,
1033
+ "learning_rate": 8.850628495071336e-05,
1034
+ "loss": 3.3945,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.55,
1039
+ "learning_rate": 8.746667664356956e-05,
1040
+ "loss": 3.5575,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.56,
1045
+ "learning_rate": 8.642844275656957e-05,
1046
+ "loss": 3.4334,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.56,
1051
+ "learning_rate": 8.539169714375885e-05,
1052
+ "loss": 3.5686,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.56,
1057
+ "learning_rate": 8.435655349597689e-05,
1058
+ "loss": 3.7207,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.57,
1063
+ "learning_rate": 8.332312532838978e-05,
1064
+ "loss": 3.4545,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.57,
1069
+ "learning_rate": 8.229152596804168e-05,
1070
+ "loss": 3.4879,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.57,
1075
+ "learning_rate": 8.126186854142752e-05,
1076
+ "loss": 3.6279,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.58,
1081
+ "learning_rate": 8.023426596208739e-05,
1082
+ "loss": 3.4412,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.58,
1087
+ "learning_rate": 7.920883091822408e-05,
1088
+ "loss": 3.5066,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.58,
1093
+ "learning_rate": 7.818567586034577e-05,
1094
+ "loss": 3.3587,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.59,
1099
+ "learning_rate": 7.716491298893442e-05,
1100
+ "loss": 3.5664,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.59,
1105
+ "learning_rate": 7.614665424214193e-05,
1106
+ "loss": 3.4065,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.59,
1111
+ "learning_rate": 7.513101128351454e-05,
1112
+ "loss": 3.6623,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.6,
1117
+ "learning_rate": 7.411809548974792e-05,
1118
+ "loss": 3.3463,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.6,
1123
+ "learning_rate": 7.310801793847344e-05,
1124
+ "loss": 3.5487,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.6,
1129
+ "learning_rate": 7.210088939607708e-05,
1130
+ "loss": 3.3901,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.61,
1135
+ "learning_rate": 7.109682030555283e-05,
1136
+ "loss": 3.2565,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.61,
1141
+ "learning_rate": 7.009592077439134e-05,
1142
+ "loss": 3.4692,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.61,
1147
+ "learning_rate": 6.909830056250527e-05,
1148
+ "loss": 3.4258,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.62,
1153
+ "learning_rate": 6.8104069070193e-05,
1154
+ "loss": 3.4803,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.62,
1159
+ "learning_rate": 6.711333532614168e-05,
1160
+ "loss": 3.5306,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.62,
1165
+ "learning_rate": 6.612620797547087e-05,
1166
+ "loss": 3.4718,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.63,
1171
+ "learning_rate": 6.51427952678185e-05,
1172
+ "loss": 3.4513,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.63,
1177
+ "learning_rate": 6.416320504546997e-05,
1178
+ "loss": 3.6049,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.63,
1183
+ "learning_rate": 6.318754473153221e-05,
1184
+ "loss": 3.4402,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.64,
1189
+ "learning_rate": 6.22159213181533e-05,
1190
+ "loss": 3.4833,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.64,
1195
+ "learning_rate": 6.12484413547897e-05,
1196
+ "loss": 3.493,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.64,
1201
+ "learning_rate": 6.0285210936521955e-05,
1202
+ "loss": 3.3789,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.65,
1207
+ "learning_rate": 5.9326335692419995e-05,
1208
+ "loss": 3.386,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.65,
1213
+ "learning_rate": 5.83719207739599e-05,
1214
+ "loss": 3.5344,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.65,
1219
+ "learning_rate": 5.7422070843492734e-05,
1220
+ "loss": 3.4203,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.65,
1225
+ "learning_rate": 5.647689006276726e-05,
1226
+ "loss": 3.5331,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.66,
1231
+ "learning_rate": 5.553648208150728e-05,
1232
+ "loss": 3.5052,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.66,
1237
+ "learning_rate": 5.4600950026045326e-05,
1238
+ "loss": 3.631,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.66,
1243
+ "learning_rate": 5.3670396488013854e-05,
1244
+ "loss": 3.4552,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.67,
1249
+ "learning_rate": 5.274492351309461e-05,
1250
+ "loss": 3.4078,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.67,
1255
+ "learning_rate": 5.182463258982846e-05,
1256
+ "loss": 3.4163,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.67,
1261
+ "learning_rate": 5.090962463848592e-05,
1262
+ "loss": 3.4208,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.68,
1267
+ "learning_rate": 5.000000000000002e-05,
1268
+ "loss": 3.5513,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.68,
1273
+ "learning_rate": 4.909585842496287e-05,
1274
+ "loss": 3.4736,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.68,
1279
+ "learning_rate": 4.8197299062686995e-05,
1280
+ "loss": 3.4162,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.69,
1285
+ "learning_rate": 4.7304420450332244e-05,
1286
+ "loss": 3.4161,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.69,
1291
+ "learning_rate": 4.6417320502100316e-05,
1292
+ "loss": 3.5424,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.69,
1297
+ "learning_rate": 4.5536096498497295e-05,
1298
+ "loss": 3.4375,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.7,
1303
+ "learning_rate": 4.46608450756656e-05,
1304
+ "loss": 3.4181,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.7,
1309
+ "learning_rate": 4.379166221478697e-05,
1310
+ "loss": 3.4234,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.7,
1315
+ "learning_rate": 4.2928643231556844e-05,
1316
+ "loss": 3.2769,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.71,
1321
+ "learning_rate": 4.207188276573214e-05,
1322
+ "loss": 3.5804,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.71,
1327
+ "learning_rate": 4.12214747707527e-05,
1328
+ "loss": 3.4969,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.71,
1333
+ "learning_rate": 4.037751250343841e-05,
1334
+ "loss": 3.4878,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.72,
1339
+ "learning_rate": 3.954008851376252e-05,
1340
+ "loss": 3.4461,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.72,
1345
+ "learning_rate": 3.8709294634702376e-05,
1346
+ "loss": 3.4997,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.72,
1351
+ "learning_rate": 3.788522197216897e-05,
1352
+ "loss": 3.2672,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.73,
1357
+ "learning_rate": 3.7067960895016275e-05,
1358
+ "loss": 3.4284,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.73,
1363
+ "learning_rate": 3.6257601025131026e-05,
1364
+ "loss": 3.3721,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.73,
1369
+ "learning_rate": 3.545423122760493e-05,
1370
+ "loss": 3.3755,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.74,
1375
+ "learning_rate": 3.465793960098945e-05,
1376
+ "loss": 3.412,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.74,
1381
+ "learning_rate": 3.386881346763483e-05,
1382
+ "loss": 3.3902,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.74,
1387
+ "learning_rate": 3.308693936411421e-05,
1388
+ "loss": 3.3975,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.75,
1393
+ "learning_rate": 3.231240303173394e-05,
1394
+ "loss": 3.3772,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.75,
1399
+ "learning_rate": 3.154528940713113e-05,
1400
+ "loss": 3.1924,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.75,
1405
+ "learning_rate": 3.078568261295933e-05,
1406
+ "loss": 3.439,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.75,
1411
+ "learning_rate": 3.0033665948663448e-05,
1412
+ "loss": 3.2018,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.76,
1417
+ "learning_rate": 2.9289321881345254e-05,
1418
+ "loss": 3.4706,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.76,
1423
+ "learning_rate": 2.8552732036719687e-05,
1424
+ "loss": 3.4761,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.76,
1429
+ "learning_rate": 2.7823977190163786e-05,
1430
+ "loss": 3.4259,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.77,
1435
+ "learning_rate": 2.7103137257858868e-05,
1436
+ "loss": 3.4053,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.77,
1441
+ "learning_rate": 2.639029128802657e-05,
1442
+ "loss": 3.2636,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.77,
1447
+ "learning_rate": 2.5685517452260567e-05,
1448
+ "loss": 3.3724,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.78,
1453
+ "learning_rate": 2.4988893036954043e-05,
1454
+ "loss": 3.3544,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.78,
1459
+ "learning_rate": 2.4300494434824373e-05,
1460
+ "loss": 3.2656,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.78,
1465
+ "learning_rate": 2.362039713653581e-05,
1466
+ "loss": 3.4023,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.79,
1471
+ "learning_rate": 2.2948675722421086e-05,
1472
+ "loss": 3.2969,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.79,
1477
+ "learning_rate": 2.2285403854302912e-05,
1478
+ "loss": 3.4511,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.79,
1483
+ "learning_rate": 2.163065426741603e-05,
1484
+ "loss": 3.4428,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.8,
1489
+ "learning_rate": 2.098449876243096e-05,
1490
+ "loss": 3.3647,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.8,
1495
+ "learning_rate": 2.0347008197580374e-05,
1496
+ "loss": 3.2604,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.8,
1501
+ "learning_rate": 1.9718252480888566e-05,
1502
+ "loss": 3.3492,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.81,
1507
+ "learning_rate": 1.9098300562505266e-05,
1508
+ "loss": 3.3132,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.81,
1513
+ "learning_rate": 1.848722042714457e-05,
1514
+ "loss": 3.1101,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.81,
1519
+ "learning_rate": 1.78850790866296e-05,
1520
+ "loss": 3.4295,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.82,
1525
+ "learning_rate": 1.7291942572543807e-05,
1526
+ "loss": 3.27,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.82,
1531
+ "learning_rate": 1.6707875928990058e-05,
1532
+ "loss": 3.307,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.82,
1537
+ "learning_rate": 1.6132943205457606e-05,
1538
+ "loss": 3.2597,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.83,
1543
+ "learning_rate": 1.5567207449798515e-05,
1544
+ "loss": 3.2053,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.83,
1549
+ "learning_rate": 1.5010730701313625e-05,
1550
+ "loss": 3.2863,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.83,
1555
+ "learning_rate": 1.4463573983949341e-05,
1556
+ "loss": 3.1945,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.84,
1561
+ "learning_rate": 1.3925797299605647e-05,
1562
+ "loss": 3.3066,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.84,
1567
+ "learning_rate": 1.339745962155613e-05,
1568
+ "loss": 3.3855,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.84,
1573
+ "learning_rate": 1.2878618887981064e-05,
1574
+ "loss": 3.1933,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.85,
1579
+ "learning_rate": 1.2369331995613665e-05,
1580
+ "loss": 3.4084,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.85,
1585
+ "learning_rate": 1.1869654793500784e-05,
1586
+ "loss": 3.315,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.85,
1591
+ "learning_rate": 1.1379642076878527e-05,
1592
+ "loss": 3.3994,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.85,
1597
+ "learning_rate": 1.0899347581163221e-05,
1598
+ "loss": 3.2624,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.86,
1603
+ "learning_rate": 1.042882397605871e-05,
1604
+ "loss": 3.2287,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.86,
1609
+ "learning_rate": 9.968122859780648e-06,
1610
+ "loss": 3.245,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.86,
1615
+ "learning_rate": 9.517294753398064e-06,
1616
+ "loss": 3.2106,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.87,
1621
+ "learning_rate": 9.076389095293148e-06,
1622
+ "loss": 3.2575,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.87,
1627
+ "learning_rate": 8.645454235739903e-06,
1628
+ "loss": 3.3462,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.87,
1633
+ "learning_rate": 8.224537431601886e-06,
1634
+ "loss": 3.5159,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.88,
1639
+ "learning_rate": 7.81368484114996e-06,
1640
+ "loss": 3.3177,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.88,
1645
+ "learning_rate": 7.412941519000527e-06,
1646
+ "loss": 3.1598,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.88,
1651
+ "learning_rate": 7.022351411174866e-06,
1652
+ "loss": 3.4421,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.89,
1657
+ "learning_rate": 6.6419573502798374e-06,
1658
+ "loss": 3.2242,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.89,
1663
+ "learning_rate": 6.2718010508108545e-06,
1664
+ "loss": 3.3379,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.89,
1669
+ "learning_rate": 5.911923104577455e-06,
1670
+ "loss": 3.3409,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.9,
1675
+ "learning_rate": 5.562362976251901e-06,
1676
+ "loss": 3.2563,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.9,
1681
+ "learning_rate": 5.223158999041444e-06,
1682
+ "loss": 3.322,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.9,
1687
+ "learning_rate": 4.8943483704846475e-06,
1688
+ "loss": 3.365,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.91,
1693
+ "learning_rate": 4.575967148372317e-06,
1694
+ "loss": 3.3066,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.91,
1699
+ "learning_rate": 4.268050246793276e-06,
1700
+ "loss": 3.2917,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.91,
1705
+ "learning_rate": 3.970631432305694e-06,
1706
+ "loss": 3.2967,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.92,
1711
+ "learning_rate": 3.68374332023419e-06,
1712
+ "loss": 3.2636,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.92,
1717
+ "learning_rate": 3.40741737109318e-06,
1718
+ "loss": 3.2059,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.92,
1723
+ "learning_rate": 3.1416838871368924e-06,
1724
+ "loss": 3.2664,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.93,
1729
+ "learning_rate": 2.8865720090364034e-06,
1730
+ "loss": 3.4219,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.93,
1735
+ "learning_rate": 2.6421097126839712e-06,
1736
+ "loss": 3.3064,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.93,
1741
+ "learning_rate": 2.4083238061252567e-06,
1742
+ "loss": 3.1889,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.94,
1747
+ "learning_rate": 2.1852399266194314e-06,
1748
+ "loss": 3.4085,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.94,
1753
+ "learning_rate": 1.9728825378278246e-06,
1754
+ "loss": 3.3206,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.94,
1759
+ "learning_rate": 1.771274927131139e-06,
1760
+ "loss": 3.4628,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.95,
1765
+ "learning_rate": 1.580439203075812e-06,
1766
+ "loss": 3.1341,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.95,
1771
+ "learning_rate": 1.400396292949513e-06,
1772
+ "loss": 3.3387,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.95,
1777
+ "learning_rate": 1.231165940486234e-06,
1778
+ "loss": 3.2056,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.95,
1783
+ "learning_rate": 1.0727667037011668e-06,
1784
+ "loss": 3.1854,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.96,
1789
+ "learning_rate": 9.252159528556403e-07,
1790
+ "loss": 3.2785,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.96,
1795
+ "learning_rate": 7.885298685522235e-07,
1796
+ "loss": 3.4136,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.96,
1801
+ "learning_rate": 6.627234399603555e-07,
1802
+ "loss": 3.2466,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.97,
1807
+ "learning_rate": 5.478104631726711e-07,
1808
+ "loss": 3.5445,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.97,
1813
+ "learning_rate": 4.438035396920004e-07,
1814
+ "loss": 3.4556,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.97,
1819
+ "learning_rate": 3.50714075049563e-07,
1820
+ "loss": 3.0958,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.98,
1825
+ "learning_rate": 2.685522775541904e-07,
1826
+ "loss": 3.3386,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.98,
1831
+ "learning_rate": 1.973271571728441e-07,
1832
+ "loss": 3.3139,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.98,
1837
+ "learning_rate": 1.3704652454261668e-07,
1838
+ "loss": 3.2791,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.99,
1843
+ "learning_rate": 8.771699011416168e-08,
1844
+ "loss": 3.2188,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.99,
1849
+ "learning_rate": 4.934396342684e-08,
1850
+ "loss": 3.3562,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.99,
1855
+ "learning_rate": 2.193165251545004e-08,
1856
+ "loss": 3.3555,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 1.0,
1861
+ "learning_rate": 5.483063448785686e-09,
1862
+ "loss": 3.609,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 1.0,
1867
+ "learning_rate": 0.0,
1868
+ "loss": 3.4165,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 1.0,
1873
+ "step": 310,
1874
+ "total_flos": 53958111068160.0,
1875
+ "train_loss": 4.296783600314971,
1876
+ "train_runtime": 4111.9826,
1877
+ "train_samples_per_second": 7.229,
1878
+ "train_steps_per_second": 0.075
1879
+ }
1880
+ ],
1881
+ "logging_steps": 1.0,
1882
+ "max_steps": 310,
1883
+ "num_input_tokens_seen": 0,
1884
+ "num_train_epochs": 1,
1885
+ "save_steps": 50000,
1886
+ "total_flos": 53958111068160.0,
1887
+ "train_batch_size": 16,
1888
+ "trial_name": null,
1889
+ "trial_params": null
1890
+ }