File size: 1,843 Bytes
8d3b22e
bf67fd7
 
 
 
 
 
 
 
 
 
 
 
a6f4193
8d3b22e
 
3ee1192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4f4220
3ee1192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6f4193
 
 
f6eeb96
a6f4193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: mit
datasets:
- universeTBD/arxiv-astro-abstracts-all
language:
- en
metrics:
- perplexity
pipeline_tag: text-generation
tags:
- llama-2
- astronomy
- astrophysics
- arxiv
---

<p><h1>AstroLLaMA</h1></p>

<p align="center">
  <img src="https://huggingface.co/universeTBD/astrollama/resolve/main/images/astrollama-logo.png" alt="AstroLLaMA" width="500px"/>
</p>

## Loading the model

```python
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(
    pretrained_model_name_or_path="universeTBD/astrollama"
)
model = AutoModelForCausalLM.from_pretrained(
    pretrained_model_name_or_path="universeTBD/astrollama",
    device_map="auto",
)
```

## Generating text from a prompt

```python
import torch
from transformers import pipeline

generator = pipeline(
    task="text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto"
)

# Taken from https://arxiv.org/abs/2308.12823
prompt = "In this letter, we report the discovery of the highest redshift, " \
    "heavily obscured, radio-loud QSO candidate selected using JWST NIRCam/MIRI, " \
    "mid-IR, sub-mm, and radio imaging in the COSMOS-Web field. "

# For reproducibility
torch.manual_seed(42)

generated_text = generator(
    prompt,
    do_sample=True,
    max_length=512
)
```

## Embedding text with AstroLLaMA

```python
texts = [
    "Abstract 1",
    "Abstract 2"
]
inputs = tokenizer(
    text_batch,
    return_tensors="pt",
    return_token_type_ids=False,
    padding=True,
    truncation=True,
    max_length=4096
)
inputs.to(model.device)
outputs = model(**inputs, output_hidden_states=True)

# Last layer of the hidden states. Get the embedding of the first token in each sequence
embeddings = outputs["hidden_states"][-1][:, 0, ...].detach().cpu().numpy()
```