UnsuiGo commited on
Commit
2304ddc
·
verified ·
1 Parent(s): 0891601

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -68
README.md CHANGED
@@ -1,68 +1,69 @@
1
- ---
2
- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
3
- tags:
4
- - conversational
5
- license: mit
6
- ---
7
-
8
- ## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)
9
-
10
- DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations.
11
- The [human evaluation results](https://github.com/dreasysnail/Dialogpt_dev#human-evaluation) indicate that the response generated from DialoGPT is comparable to human response quality under a single-turn conversation Turing test.
12
- The model is trained on 147M multi-turn dialogue from Reddit discussion thread.
13
-
14
- * Multi-turn generation examples from an interactive environment:
15
-
16
- |Role | Response |
17
- |---------|--------|
18
- |User | Does money buy happiness? |
19
- | Bot | Depends how much money you spend on it .|
20
- |User | What is the best way to buy happiness ? |
21
- | Bot | You just have to be a millionaire by your early 20s, then you can be happy . |
22
- |User |This is so difficult ! |
23
- | Bot | You have no idea how hard it is to be a millionaire and happy . There is a reason the rich have a lot of money |
24
-
25
- Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT)
26
-
27
- ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536)
28
-
29
- ### How to use
30
-
31
- Now we are ready to try out how the model works as a chatting partner!
32
-
33
- ```python
34
- from transformers import AutoModelForCausalLM, AutoTokenizer
35
- import torch
36
-
37
-
38
- tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
39
- model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
40
-
41
- # Let's chat for 5 lines
42
- for step in range(5):
43
- # encode the new user input, add the eos_token and return a tensor in Pytorch
44
- new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
45
-
46
- # append the new user input tokens to the chat history
47
- bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
48
-
49
- # generated a response while limiting the total chat history to 1000 tokens,
50
- chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
51
-
52
- # pretty print last ouput tokens from bot
53
- print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
54
- ```
55
-
56
- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
57
- Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_microsoft__DialoGPT-small)
58
-
59
- | Metric | Value |
60
- |-----------------------|---------------------------|
61
- | Avg. | 25.02 |
62
- | ARC (25-shot) | 25.77 |
63
- | HellaSwag (10-shot) | 25.79 |
64
- | MMLU (5-shot) | 25.81 |
65
- | TruthfulQA (0-shot) | 47.49 |
66
- | Winogrande (5-shot) | 50.28 |
67
- | GSM8K (5-shot) | 0.0 |
68
- | DROP (3-shot) | 0.0 |
 
 
1
+ ---
2
+ thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
3
+ tags:
4
+ - conversational
5
+ license: mit
6
+ library_name: transformers
7
+ ---
8
+
9
+ ## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)
10
+
11
+ DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations.
12
+ The [human evaluation results](https://github.com/dreasysnail/Dialogpt_dev#human-evaluation) indicate that the response generated from DialoGPT is comparable to human response quality under a single-turn conversation Turing test.
13
+ The model is trained on 147M multi-turn dialogue from Reddit discussion thread.
14
+
15
+ * Multi-turn generation examples from an interactive environment:
16
+
17
+ |Role | Response |
18
+ |---------|--------|
19
+ |User | Does money buy happiness? |
20
+ | Bot | Depends how much money you spend on it .|
21
+ |User | What is the best way to buy happiness ? |
22
+ | Bot | You just have to be a millionaire by your early 20s, then you can be happy . |
23
+ |User |This is so difficult ! |
24
+ | Bot | You have no idea how hard it is to be a millionaire and happy . There is a reason the rich have a lot of money |
25
+
26
+ Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT)
27
+
28
+ ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536)
29
+
30
+ ### How to use
31
+
32
+ Now we are ready to try out how the model works as a chatting partner!
33
+
34
+ ```python
35
+ from transformers import AutoModelForCausalLM, AutoTokenizer
36
+ import torch
37
+
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
40
+ model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
41
+
42
+ # Let's chat for 5 lines
43
+ for step in range(5):
44
+ # encode the new user input, add the eos_token and return a tensor in Pytorch
45
+ new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
46
+
47
+ # append the new user input tokens to the chat history
48
+ bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
49
+
50
+ # generated a response while limiting the total chat history to 1000 tokens,
51
+ chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
52
+
53
+ # pretty print last ouput tokens from bot
54
+ print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
55
+ ```
56
+
57
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
58
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_microsoft__DialoGPT-small)
59
+
60
+ | Metric | Value |
61
+ |-----------------------|---------------------------|
62
+ | Avg. | 25.02 |
63
+ | ARC (25-shot) | 25.77 |
64
+ | HellaSwag (10-shot) | 25.79 |
65
+ | MMLU (5-shot) | 25.81 |
66
+ | TruthfulQA (0-shot) | 47.49 |
67
+ | Winogrande (5-shot) | 50.28 |
68
+ | GSM8K (5-shot) | 0.0 |
69
+ | DROP (3-shot) | 0.0 |