File size: 1,856 Bytes
641de9d
 
 
8bf140a
 
641de9d
 
 
 
 
 
 
 
 
 
 
8bf140a
 
 
 
 
 
 
641de9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf140a
641de9d
 
 
 
 
 
 
 
8bf140a
 
 
 
 
 
 
 
 
 
641de9d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-russian-spell
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-russian-spell

This model is a fine-tuned version of [sberbank-ai/ruT5-base](https://huggingface.co/sberbank-ai/ruT5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4066
- Rouge1: 44.2214
- Rouge2: 21.688
- Rougel: 44.2793
- Rougelsum: 44.0781
- Gen Len: 60.87

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.2958        | 0.2   | 2500  | 0.4393          | 43.9635 | 21.3982 | 43.9784 | 43.8423   | 61.338  |
| 0.2427        | 0.4   | 5000  | 0.4460          | 44.609  | 22.1448 | 44.6314 | 44.4817   | 61.028  |
| 0.5326        | 0.6   | 7500  | 0.4100          | 44.7071 | 21.9365 | 44.7491 | 44.5944   | 60.844  |
| 0.5262        | 0.8   | 10000 | 0.4066          | 44.2214 | 21.688  | 44.2793 | 44.0781   | 60.87   |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6