UsernameJustAnother
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
---
|
2 |
base_model: unsloth/Mistral-Nemo-Instruct-2407
|
3 |
language:
|
4 |
- en
|
@@ -17,6 +16,42 @@ tags:
|
|
17 |
- **License:** apache-2.0
|
18 |
- **Finetuned from model :** unsloth/Mistral-Nemo-Instruct-2407
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
1 |
base_model: unsloth/Mistral-Nemo-Instruct-2407
|
2 |
language:
|
3 |
- en
|
|
|
16 |
- **License:** apache-2.0
|
17 |
- **Finetuned from model :** unsloth/Mistral-Nemo-Instruct-2407
|
18 |
|
19 |
+
Experimental RP Finetune with secret sauce dataset, rsLoRA, r = 256, on an Colab A100 instance. 36GB vRAM used, 2 epochs ~ 3.5hrs of training.
|
20 |
+
|
21 |
+
This is for A/B testing vs Marlin v1, to see what difference rank 256 (v2) has compared to rank 64 (v1).
|
22 |
+
|
23 |
+
|
24 |
+
```
|
25 |
+
==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1
|
26 |
+
\\ /| Num examples = 8,160 | Num Epochs = 2
|
27 |
+
O^O/ \_/ \ Batch size per device = 2 | Gradient Accumulation steps = 4
|
28 |
+
\ / Total batch size = 8 | Total steps = 2,040
|
29 |
+
"-____-" Number of trainable parameters = 912,261,120
|
30 |
+
|
31 |
+
r = 256,
|
32 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
33 |
+
"gate_proj", "up_proj", "down_proj",],
|
34 |
+
lora_alpha = 16,
|
35 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
36 |
+
bias = "none", # Supports any, but = "none" is optimized
|
37 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
38 |
+
random_state = 3407,
|
39 |
+
use_rslora = True, # lora_alpha --> 16
|
40 |
+
loftq_config = None,
|
41 |
+
|
42 |
+
per_device_train_batch_size = 2,
|
43 |
+
gradient_accumulation_steps = 4,
|
44 |
+
warmup_steps = 5,
|
45 |
+
num_train_epochs = 2,
|
46 |
+
learning_rate = 2e-5, # down from 2e-4, could go down to (5e-5 then 1e-5)
|
47 |
+
fp16 = not is_bfloat16_supported(),
|
48 |
+
bf16 = is_bfloat16_supported(),
|
49 |
+
logging_steps = 1,
|
50 |
+
optim = "adamw_8bit",
|
51 |
+
weight_decay = 0.01,
|
52 |
+
lr_scheduler_type = "linear",
|
53 |
+
seed = 3407,
|
54 |
+
```
|
55 |
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
56 |
|
57 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|