Update README.md
Browse files
README.md
CHANGED
@@ -7,8 +7,8 @@ library_name: transformers
|
|
7 |
pipeline_tag: text-generation
|
8 |
---
|
9 |
|
10 |
-
![SauerkrautLM](images/hero.png "SauerkrautLM-7b-HerO
|
11 |
-
## VAGO solutions SauerkrautLM
|
12 |
Introducing SauerkrautLM-v1 - Your German Language Powerhouse!
|
13 |
|
14 |
We are thrilled to unveil our **very first release**, **SauerkrautLM-v1**. This remarkable creation marks a significant milestone as it is specifically **tailored for the German-speaking community**. In a landscape where German language models are scarce, we are proud to offer a solution that fills this void.
|
@@ -62,80 +62,98 @@ Bitte erkläre mir, wie die Zusammenführung von Modellen durch bestehende Spitz
|
|
62 |
```
|
63 |
## Evaluation
|
64 |
**MT-Bench (German)**
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
**MT-Bench (English)**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
![First Turn](images/eng-1turn.png "First Turn")
|
73 |
-
![Second Turn](images/eng-2turn.png "Second Turn")
|
74 |
-
![Average](images/eng-avg.png "Average")
|
75 |
|
76 |
**Language Model evaluation Harness**
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|arc_easy | 0|acc | 0.8388|± |0.0075|
|
81 |
-
| | |acc_norm| 0.8262|± |0.0078|
|
82 |
-
|boolq | 1|acc | 0.8725|± |0.0058|
|
83 |
-
|copa | 0|acc | 0.9100|± |0.0288|
|
84 |
-
|hellaswag | 0|acc | 0.6285|± |0.0048|
|
85 |
-
| | |acc_norm| 0.8125|± |0.0039|
|
86 |
-
|lambada_openai_mt_de| 0|ppl |45.7314|± |2.8280|
|
87 |
-
| | |acc | 0.4141|± |0.0069|
|
88 |
-
|lambada_standard | 0|ppl | 3.5467|± |0.0779|
|
89 |
-
| | |acc | 0.6922|± |0.0064|
|
90 |
-
|multirc | 1|acc | 0.1459|± |0.0114|
|
91 |
-
|openbookqa | 0|acc | 0.3640|± |0.0215|
|
92 |
-
| | |acc_norm| 0.4600|± |0.0223|
|
93 |
-
|piqa | 0|acc | 0.8123|± |0.0091|
|
94 |
-
| | |acc_norm| 0.8281|± |0.0088|
|
95 |
-
|race | 1|acc | 0.4507|± |0.0154|
|
96 |
-
|rte | 0|acc | 0.7040|± |0.0275|
|
97 |
-
|truthfulqa_mc | 1|mc1 | 0.3329|± |0.0165|
|
98 |
-
| | |mc2 | 0.4915|± |0.0150|
|
99 |
-
|webqs | 0|acc | 0.1924|± |0.0087|
|
100 |
-
|wic | 0|acc | 0.5752|± |0.0196|
|
101 |
-
|winogrande | 0|acc | 0.7301|± |0.0125|
|
102 |
-
|wsc | 0|acc | 0.6154|± |0.0479|
|
103 |
-
|drop | 1|em | 0.2140|± |0.0042|
|
104 |
-
| | |f1 | 0.4011|± |0.0041|
|
105 |
-
|triviaqa | 3|em | 0.6259|± |0.0036|
|
106 |
-
|wmt16-de-en | 0|bleu |39.2043|± |0.3982|
|
107 |
-
| | |chrf | 0.6316|± |0.0029|
|
108 |
-
| | |ter | 0.4816|± |0.0054|
|
109 |
-
|wmt16-en-de | 0|bleu |25.5745|± |0.3492|
|
110 |
-
| | |chrf | 0.5331|± |0.0030|
|
111 |
-
| | |ter | 0.6463|± |0.0039|
|
112 |
-
|xnli_de | 0|acc | 0.4547|± |0.0070|
|
113 |
-
|xnli_en | 0|acc | 0.5595|± |0.0070|
|
114 |
-
```
|
115 |
**BBH**
|
116 |
-
|
117 |
-
| Task |Version| Metric |Value | |Stderr|
|
118 |
-
|------------------------------------------------|------:|---------------------|-----:|---|-----:|
|
119 |
-
|bigbench_causal_judgement | 0|multiple_choice_grade|0.6053|± |0.0356|
|
120 |
-
|bigbench_date_understanding | 0|multiple_choice_grade|0.6992|± |0.0239|
|
121 |
-
|bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3721|± |0.0302|
|
122 |
-
|bigbench_geometric_shapes | 0|multiple_choice_grade|0.1671|± |0.0197|
|
123 |
-
| | |exact_str_match |0.1003|± |0.0159|
|
124 |
-
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2540|± |0.0195|
|
125 |
-
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2043|± |0.0152|
|
126 |
-
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4667|± |0.0289|
|
127 |
-
|bigbench_movie_recommendation | 0|multiple_choice_grade|0.3700|± |0.0216|
|
128 |
-
|bigbench_navigate | 0|multiple_choice_grade|0.4970|± |0.0158|
|
129 |
-
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6965|± |0.0103|
|
130 |
-
|bigbench_ruin_names | 0|multiple_choice_grade|0.4152|± |0.0233|
|
131 |
-
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.1443|± |0.0111|
|
132 |
-
|bigbench_snarks | 0|multiple_choice_grade|0.6464|± |0.0356|
|
133 |
-
|bigbench_sports_understanding | 0|multiple_choice_grade|0.6846|± |0.0148|
|
134 |
-
|bigbench_temporal_sequences | 0|multiple_choice_grade|0.3150|± |0.0147|
|
135 |
-
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2168|± |0.0117|
|
136 |
-
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1537|± |0.0086|
|
137 |
-
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4667|± |0.0289|
|
138 |
-
```
|
139 |
|
140 |
|
141 |
## Disclaimer
|
|
|
7 |
pipeline_tag: text-generation
|
8 |
---
|
9 |
|
10 |
+
![SauerkrautLM](images/hero.png "SauerkrautLM-7b-HerO")
|
11 |
+
## VAGO solutions SauerkrautLM-7b-HerO
|
12 |
Introducing SauerkrautLM-v1 - Your German Language Powerhouse!
|
13 |
|
14 |
We are thrilled to unveil our **very first release**, **SauerkrautLM-v1**. This remarkable creation marks a significant milestone as it is specifically **tailored for the German-speaking community**. In a landscape where German language models are scarce, we are proud to offer a solution that fills this void.
|
|
|
62 |
```
|
63 |
## Evaluation
|
64 |
**MT-Bench (German)**
|
65 |
+
```
|
66 |
+
########## First turn ##########
|
67 |
+
score
|
68 |
+
model turn
|
69 |
+
SauerkrautLM-70b-v1 1 7.25000
|
70 |
+
SauerkrautLM-7b-HerO 1 6.96875
|
71 |
+
SauerkrautLM-7b-v1-mistral 1 6.30625
|
72 |
+
leo-hessianai-13b-chat 1 6.18750
|
73 |
+
SauerkrautLM-13b-v1 1 6.16250
|
74 |
+
leo-mistral-hessianai-7b-chat 1 6.15625
|
75 |
+
Llama-2-70b-chat-hf 1 6.03750
|
76 |
+
vicuna-13b-v1.5 1 5.80000
|
77 |
+
SauerkrautLM-7b-v1 1 5.65000
|
78 |
+
leo-hessianai-7b-chat 1 5.52500
|
79 |
+
vicuna-7b-v1.5 1 5.42500
|
80 |
+
Mistral-7B-v0.1 1 5.37500
|
81 |
+
SauerkrautLM-3b-v1 1 3.17500
|
82 |
+
Llama-2-7b 1 1.28750
|
83 |
+
open_llama_3b_v2 1 1.68750
|
84 |
+
|
85 |
+
########## Second turn ##########
|
86 |
+
score
|
87 |
+
model turn
|
88 |
+
SauerkrautLM-70b-v1 2 6.83125
|
89 |
+
SauerkrautLM-7b-HerO 2 6.30625
|
90 |
+
vicuna-13b-v1.5 2 5.63125
|
91 |
+
SauerkrautLM-13b-v1 2 5.34375
|
92 |
+
SauerkrautLM-7b-v1-mistral 2 5.26250
|
93 |
+
leo-mistral-hessianai-7b-chat 2 4.99375
|
94 |
+
SauerkrautLM-7b-v1 2 4.73750
|
95 |
+
leo-hessianai-13b-chat 2 4.71250
|
96 |
+
vicuna-7b-v1.5 2 4.67500
|
97 |
+
Llama-2-70b-chat-hf 2 4.66250
|
98 |
+
Mistral-7B-v0.1 2 4.53750
|
99 |
+
leo-hessianai-7b-chat 2 2.65000
|
100 |
+
SauerkrautLM-3b-v1 2 1.98750
|
101 |
+
open_llama_3b_v2 2 1.22500
|
102 |
+
Llama-2-7b 2 1.07500
|
103 |
+
|
104 |
+
########## Average ##########
|
105 |
+
score
|
106 |
+
model
|
107 |
+
SauerkrautLM-70b-v1 7.040625
|
108 |
+
SauerkrautLM-7b-HerO 6.637500
|
109 |
+
SauerkrautLM-7b-v1-mistral 5.784375
|
110 |
+
SauerkrautLM-13b-v1 5.753125
|
111 |
+
vicuna-13b-v1.5 5.715625
|
112 |
+
leo-mistral-hessianai-7b-chat 5.575000
|
113 |
+
leo-hessianai-13b-chat 5.450000
|
114 |
+
Llama-2-70b-chat-hf 5.350000
|
115 |
+
SauerkrautLM-v1-7b 5.193750
|
116 |
+
vicuna-7b-v1.5 5.050000
|
117 |
+
Mistral-7B-v0.1 4.956250
|
118 |
+
leo-hessianai-7b-chat 4.087500
|
119 |
+
SauerkrautLM-3b-v1 2.581250
|
120 |
+
open_llama_3b_v2 1.456250
|
121 |
+
Llama-2-7b 1.181250
|
122 |
+
```
|
123 |
**MT-Bench (English)**
|
124 |
+
```
|
125 |
+
########## First turn ##########
|
126 |
+
score
|
127 |
+
model turn
|
128 |
+
OpenHermes-2.5-Mistral-7B 1 8.21875
|
129 |
+
SauerkrautLM-7b-HerO 1 8.03125
|
130 |
+
Mistral-7B-OpenOrca 1 7.65625
|
131 |
+
neural-chat-7b-v3-1 1 7.22500
|
132 |
+
|
133 |
+
########## Second turn ##########
|
134 |
+
score
|
135 |
+
model turn
|
136 |
+
OpenHermes-2.5-Mistral-7B 2 7.1000
|
137 |
+
SauerkrautLM-7b-HerO 2 6.7875
|
138 |
+
neural-chat-7b-v3-1 2 6.4000
|
139 |
+
Mistral-7B-OpenOrca 2 6.1750
|
140 |
+
|
141 |
+
########## Average ##########
|
142 |
+
score
|
143 |
+
model
|
144 |
+
OpenHermes-2.5-Mistral-7B 7.659375
|
145 |
+
SauerkrautLM-7b-HerO 7.409375
|
146 |
+
Mistral-7B-OpenOrca 6.915625
|
147 |
+
neural-chat-7b-v3-1 6.812500
|
148 |
+
```
|
149 |
|
|
|
|
|
|
|
150 |
|
151 |
**Language Model evaluation Harness**
|
152 |
+
![Harness](images/luminouscompare.PNG "SauerkrautLM-7b-HerO Harness")
|
153 |
+
*compared to Aleph Alpha Luminous Models
|
154 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
**BBH**
|
156 |
+
![BBH](images/bbh.PNG "SauerkrautLM-7b-HerO BBH")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
|
159 |
## Disclaimer
|