VERSIL91 commited on
Commit
fb5de17
1 Parent(s): 0025cd9

End of training

Browse files
Files changed (2) hide show
  1. README.md +167 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: JackFram/llama-160m
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: d3798400-dab8-4ff1-9db4-d29585565f2b
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ accelerate_config:
22
+ dynamo_backend: inductor
23
+ mixed_precision: bf16
24
+ num_machines: 1
25
+ num_processes: auto
26
+ use_cpu: false
27
+ adapter: lora
28
+ base_model: JackFram/llama-160m
29
+ bf16: auto
30
+ chat_template: llama3
31
+ dataset_prepared_path: null
32
+ datasets:
33
+ - data_files:
34
+ - 4cad4f74c7fcbf14_train_data.json
35
+ ds_type: json
36
+ format: custom
37
+ path: /workspace/input_data/4cad4f74c7fcbf14_train_data.json
38
+ type:
39
+ field_input: concatenated_headline
40
+ field_instruction: headline
41
+ field_output: trends
42
+ format: '{instruction} {input}'
43
+ no_input_format: '{instruction}'
44
+ system_format: '{system}'
45
+ system_prompt: ''
46
+ debug: null
47
+ deepspeed: null
48
+ device_map: auto
49
+ early_stopping_patience: null
50
+ eval_max_new_tokens: 128
51
+ eval_table_size: null
52
+ evals_per_epoch: 4
53
+ flash_attention: false
54
+ fp16: null
55
+ fsdp: null
56
+ fsdp_config: null
57
+ gradient_accumulation_steps: 16
58
+ gradient_checkpointing: true
59
+ group_by_length: false
60
+ hub_model_id: VERSIL91/d3798400-dab8-4ff1-9db4-d29585565f2b
61
+ hub_repo: null
62
+ hub_strategy: checkpoint
63
+ hub_token: null
64
+ learning_rate: 0.0001
65
+ local_rank: null
66
+ logging_steps: 1
67
+ lora_alpha: 16
68
+ lora_dropout: 0.05
69
+ lora_fan_in_fan_out: null
70
+ lora_model_dir: null
71
+ lora_r: 8
72
+ lora_target_linear: true
73
+ lora_target_modules:
74
+ - q_proj
75
+ - v_proj
76
+ lr_scheduler: cosine
77
+ max_memory:
78
+ 0: 70GiB
79
+ max_steps: 5
80
+ micro_batch_size: 2
81
+ mlflow_experiment_name: /tmp/4cad4f74c7fcbf14_train_data.json
82
+ model_type: AutoModelForCausalLM
83
+ num_epochs: 1
84
+ optimizer: adamw_bnb_8bit
85
+ output_dir: miner_id_24
86
+ pad_to_sequence_len: true
87
+ quantization_config:
88
+ llm_int8_enable_fp32_cpu_offload: true
89
+ load_in_8bit: true
90
+ resume_from_checkpoint: null
91
+ s2_attention: null
92
+ sample_packing: false
93
+ saves_per_epoch: 4
94
+ sequence_len: 512
95
+ special_tokens:
96
+ pad_token: </s>
97
+ strict: false
98
+ tf32: false
99
+ tokenizer_type: AutoTokenizer
100
+ torch_compile: true
101
+ train_on_inputs: false
102
+ trust_remote_code: true
103
+ val_set_size: 0.05
104
+ wandb_entity: null
105
+ wandb_mode: online
106
+ wandb_name: d3798400-dab8-4ff1-9db4-d29585565f2b
107
+ wandb_project: Gradients-On-Demand
108
+ wandb_run: your_name
109
+ wandb_runid: d3798400-dab8-4ff1-9db4-d29585565f2b
110
+ warmup_steps: 10
111
+ weight_decay: 0.0
112
+ xformers_attention: null
113
+
114
+ ```
115
+
116
+ </details><br>
117
+
118
+ # d3798400-dab8-4ff1-9db4-d29585565f2b
119
+
120
+ This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset.
121
+ It achieves the following results on the evaluation set:
122
+ - Loss: 14.8170
123
+
124
+ ## Model description
125
+
126
+ More information needed
127
+
128
+ ## Intended uses & limitations
129
+
130
+ More information needed
131
+
132
+ ## Training and evaluation data
133
+
134
+ More information needed
135
+
136
+ ## Training procedure
137
+
138
+ ### Training hyperparameters
139
+
140
+ The following hyperparameters were used during training:
141
+ - learning_rate: 0.0001
142
+ - train_batch_size: 2
143
+ - eval_batch_size: 2
144
+ - seed: 42
145
+ - gradient_accumulation_steps: 16
146
+ - total_train_batch_size: 32
147
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
148
+ - lr_scheduler_type: cosine
149
+ - lr_scheduler_warmup_steps: 10
150
+ - training_steps: 5
151
+
152
+ ### Training results
153
+
154
+ | Training Loss | Epoch | Step | Validation Loss |
155
+ |:-------------:|:------:|:----:|:---------------:|
156
+ | 15.0992 | 0.0019 | 1 | 14.9632 |
157
+ | 15.1696 | 0.0037 | 2 | 14.8963 |
158
+ | 14.5638 | 0.0075 | 4 | 14.8170 |
159
+
160
+
161
+ ### Framework versions
162
+
163
+ - PEFT 0.13.2
164
+ - Transformers 4.46.0
165
+ - Pytorch 2.5.0+cu124
166
+ - Datasets 3.0.1
167
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6059063413d5dfa33c949e7bf6dda81a429923034e18cd50094e1dfec3791cb
3
+ size 6843306