VGollapalli0816 commited on
Commit
d3203ae
Β·
verified Β·
1 Parent(s): 06c651d

Upload 4 files

Browse files
New_Retail_NLP_Project (1).ipynb ADDED
@@ -0,0 +1,1544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 26,
6
+ "id": "51d0f551",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "Requirement already satisfied: nltk in ./anaconda3/lib/python3.11/site-packages (3.8.1)\n",
14
+ "Requirement already satisfied: click in ./anaconda3/lib/python3.11/site-packages (from nltk) (8.0.4)\n",
15
+ "Requirement already satisfied: joblib in ./anaconda3/lib/python3.11/site-packages (from nltk) (1.2.0)\n",
16
+ "Requirement already satisfied: regex>=2021.8.3 in ./anaconda3/lib/python3.11/site-packages (from nltk) (2022.7.9)\n",
17
+ "Requirement already satisfied: tqdm in ./anaconda3/lib/python3.11/site-packages (from nltk) (4.65.0)\n",
18
+ "Requirement already satisfied: tensorflow in ./anaconda3/lib/python3.11/site-packages (2.17.0)\n",
19
+ "Requirement already satisfied: absl-py>=1.0.0 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (2.1.0)\n",
20
+ "Requirement already satisfied: astunparse>=1.6.0 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (1.6.3)\n",
21
+ "Requirement already satisfied: flatbuffers>=24.3.25 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (24.3.25)\n",
22
+ "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (0.6.0)\n",
23
+ "Requirement already satisfied: google-pasta>=0.1.1 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (0.2.0)\n",
24
+ "Requirement already satisfied: h5py>=3.10.0 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (3.11.0)\n",
25
+ "Requirement already satisfied: libclang>=13.0.0 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (18.1.1)\n",
26
+ "Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (0.4.0)\n",
27
+ "Requirement already satisfied: opt-einsum>=2.3.2 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (3.3.0)\n",
28
+ "Requirement already satisfied: packaging in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (23.1)\n",
29
+ "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (4.25.4)\n",
30
+ "Requirement already satisfied: requests<3,>=2.21.0 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (2.31.0)\n",
31
+ "Requirement already satisfied: setuptools in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (68.0.0)\n",
32
+ "Requirement already satisfied: six>=1.12.0 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (1.16.0)\n",
33
+ "Requirement already satisfied: termcolor>=1.1.0 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (2.4.0)\n",
34
+ "Requirement already satisfied: typing-extensions>=3.6.6 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (4.9.0)\n",
35
+ "Requirement already satisfied: wrapt>=1.11.0 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (1.14.1)\n",
36
+ "Requirement already satisfied: grpcio<2.0,>=1.24.3 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (1.65.4)\n",
37
+ "Requirement already satisfied: tensorboard<2.18,>=2.17 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (2.17.0)\n",
38
+ "Requirement already satisfied: keras>=3.2.0 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (3.4.1)\n",
39
+ "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (0.37.1)\n",
40
+ "Requirement already satisfied: numpy<2.0.0,>=1.23.5 in ./anaconda3/lib/python3.11/site-packages (from tensorflow) (1.24.3)\n",
41
+ "Requirement already satisfied: wheel<1.0,>=0.23.0 in ./anaconda3/lib/python3.11/site-packages (from astunparse>=1.6.0->tensorflow) (0.38.4)\n",
42
+ "Requirement already satisfied: rich in ./anaconda3/lib/python3.11/site-packages (from keras>=3.2.0->tensorflow) (13.7.1)\n",
43
+ "Requirement already satisfied: namex in ./anaconda3/lib/python3.11/site-packages (from keras>=3.2.0->tensorflow) (0.0.8)\n",
44
+ "Requirement already satisfied: optree in ./anaconda3/lib/python3.11/site-packages (from keras>=3.2.0->tensorflow) (0.12.1)\n",
45
+ "Requirement already satisfied: charset-normalizer<4,>=2 in ./anaconda3/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow) (2.0.4)\n",
46
+ "Requirement already satisfied: idna<4,>=2.5 in ./anaconda3/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow) (3.4)\n",
47
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in ./anaconda3/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow) (1.26.16)\n",
48
+ "Requirement already satisfied: certifi>=2017.4.17 in ./anaconda3/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow) (2023.7.22)\n",
49
+ "Requirement already satisfied: markdown>=2.6.8 in ./anaconda3/lib/python3.11/site-packages (from tensorboard<2.18,>=2.17->tensorflow) (3.4.1)\n",
50
+ "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in ./anaconda3/lib/python3.11/site-packages (from tensorboard<2.18,>=2.17->tensorflow) (0.7.2)\n",
51
+ "Requirement already satisfied: werkzeug>=1.0.1 in ./anaconda3/lib/python3.11/site-packages (from tensorboard<2.18,>=2.17->tensorflow) (2.2.3)\n",
52
+ "Requirement already satisfied: MarkupSafe>=2.1.1 in ./anaconda3/lib/python3.11/site-packages (from werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow) (2.1.1)\n",
53
+ "Requirement already satisfied: markdown-it-py>=2.2.0 in ./anaconda3/lib/python3.11/site-packages (from rich->keras>=3.2.0->tensorflow) (2.2.0)\n",
54
+ "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in ./anaconda3/lib/python3.11/site-packages (from rich->keras>=3.2.0->tensorflow) (2.15.1)\n",
55
+ "Requirement already satisfied: mdurl~=0.1 in ./anaconda3/lib/python3.11/site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.2.0->tensorflow) (0.1.0)\n"
56
+ ]
57
+ }
58
+ ],
59
+ "source": [
60
+ "!pip install nltk\n",
61
+ "!pip install tensorflow"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": 27,
67
+ "id": "16af452c",
68
+ "metadata": {},
69
+ "outputs": [
70
+ {
71
+ "name": "stderr",
72
+ "output_type": "stream",
73
+ "text": [
74
+ "[nltk_data] Downloading package punkt to\n",
75
+ "[nltk_data] /Users/preethamreddygollapalli/nltk_data...\n",
76
+ "[nltk_data] Package punkt is already up-to-date!\n"
77
+ ]
78
+ },
79
+ {
80
+ "data": {
81
+ "text/plain": [
82
+ "True"
83
+ ]
84
+ },
85
+ "execution_count": 27,
86
+ "metadata": {},
87
+ "output_type": "execute_result"
88
+ }
89
+ ],
90
+ "source": [
91
+ "import pandas as pd\n",
92
+ "import numpy as np\n",
93
+ "import re\n",
94
+ "import string\n",
95
+ "import nltk\n",
96
+ "from nltk.tokenize import sent_tokenize # tries to convert paragraph to sentences\n",
97
+ "from nltk.tokenize import word_tokenize\n",
98
+ "from nltk.stem import WordNetLemmatizer\n",
99
+ "from nltk.corpus import stopwords\n",
100
+ "from gensim.models import Word2Vec\n",
101
+ "import ast\n",
102
+ "import tensorflow as tf\n",
103
+ "from sklearn.model_selection import train_test_split\n",
104
+ "from sklearn.preprocessing import LabelEncoder\n",
105
+ "from keras.preprocessing.sequence import pad_sequences\n",
106
+ "from tensorflow.keras.models import Sequential\n",
107
+ "from tensorflow.keras.layers import Dense, Dropout, LSTM, Embedding\n",
108
+ "from tensorflow.keras.metrics import MeanAbsoluteError\n",
109
+ "from sklearn.metrics import r2_score\n",
110
+ "\n",
111
+ "nltk.download('punkt')"
112
+ ]
113
+ },
114
+ {
115
+ "cell_type": "code",
116
+ "execution_count": 28,
117
+ "id": "4ada6af5",
118
+ "metadata": {},
119
+ "outputs": [
120
+ {
121
+ "data": {
122
+ "text/html": [
123
+ "<div>\n",
124
+ "<style scoped>\n",
125
+ " .dataframe tbody tr th:only-of-type {\n",
126
+ " vertical-align: middle;\n",
127
+ " }\n",
128
+ "\n",
129
+ " .dataframe tbody tr th {\n",
130
+ " vertical-align: top;\n",
131
+ " }\n",
132
+ "\n",
133
+ " .dataframe thead th {\n",
134
+ " text-align: right;\n",
135
+ " }\n",
136
+ "</style>\n",
137
+ "<table border=\"1\" class=\"dataframe\">\n",
138
+ " <thead>\n",
139
+ " <tr style=\"text-align: right;\">\n",
140
+ " <th></th>\n",
141
+ " <th>Story Name</th>\n",
142
+ " <th>Test case Acceptance criteria</th>\n",
143
+ " <th>Test Steps</th>\n",
144
+ " <th>Test Data</th>\n",
145
+ " <th>Expected Result</th>\n",
146
+ " </tr>\n",
147
+ " </thead>\n",
148
+ " <tbody>\n",
149
+ " <tr>\n",
150
+ " <th>0</th>\n",
151
+ " <td>ACIP-247941</td>\n",
152
+ " <td>Weekly Ad - tap on any product offer - tap on ...</td>\n",
153
+ " <td>User logs into UMA application with valid user...</td>\n",
154
+ " <td>Email: [email protected], Albertsons= 8...</td>\n",
155
+ " <td>User navigates to Home page on UMA application...</td>\n",
156
+ " </tr>\n",
157
+ " <tr>\n",
158
+ " <th>1</th>\n",
159
+ " <td>ACIP-95038</td>\n",
160
+ " <td>As a PdM, I want to ensure that the L2 entry p...</td>\n",
161
+ " <td>Login UMA app with valid email/ mobile no. Ver...</td>\n",
162
+ " <td>NaN</td>\n",
163
+ " <td>User should be able to login successfully and ...</td>\n",
164
+ " </tr>\n",
165
+ " <tr>\n",
166
+ " <th>2</th>\n",
167
+ " <td>US-41769</td>\n",
168
+ " <td>As a customer, I should see age restriction me...</td>\n",
169
+ " <td>Login UMA app with valid email/ mobile no. Ent...</td>\n",
170
+ " <td>NaN</td>\n",
171
+ " <td>Your order contains age-restricted items. Some...</td>\n",
172
+ " </tr>\n",
173
+ " <tr>\n",
174
+ " <th>3</th>\n",
175
+ " <td>ACIP-237923</td>\n",
176
+ " <td>Verify Banner navigation for the below banners...</td>\n",
177
+ " <td>User logs into UMA application with valid user...</td>\n",
178
+ " <td>Email: [email protected], Albertsons= 8...</td>\n",
179
+ " <td>User navigates to Home page on UMA application...</td>\n",
180
+ " </tr>\n",
181
+ " <tr>\n",
182
+ " <th>4</th>\n",
183
+ " <td>ACIP-234885</td>\n",
184
+ " <td>Display the Meal Plans banner based on the ban...</td>\n",
185
+ " <td>User logs into UMA application with valid user...</td>\n",
186
+ " <td>Email: [email protected] / any new user...</td>\n",
187
+ " <td>User navigates to Home page on UMA application...</td>\n",
188
+ " </tr>\n",
189
+ " </tbody>\n",
190
+ "</table>\n",
191
+ "</div>"
192
+ ],
193
+ "text/plain": [
194
+ " Story Name Test case Acceptance criteria \\\n",
195
+ "0 ACIP-247941 Weekly Ad - tap on any product offer - tap on ... \n",
196
+ "1 ACIP-95038 As a PdM, I want to ensure that the L2 entry p... \n",
197
+ "2 US-41769 As a customer, I should see age restriction me... \n",
198
+ "3 ACIP-237923 Verify Banner navigation for the below banners... \n",
199
+ "4 ACIP-234885 Display the Meal Plans banner based on the ban... \n",
200
+ "\n",
201
+ " Test Steps \\\n",
202
+ "0 User logs into UMA application with valid user... \n",
203
+ "1 Login UMA app with valid email/ mobile no. Ver... \n",
204
+ "2 Login UMA app with valid email/ mobile no. Ent... \n",
205
+ "3 User logs into UMA application with valid user... \n",
206
+ "4 User logs into UMA application with valid user... \n",
207
+ "\n",
208
+ " Test Data \\\n",
209
+ "0 Email: [email protected], Albertsons= 8... \n",
210
+ "1 NaN \n",
211
+ "2 NaN \n",
212
+ "3 Email: [email protected], Albertsons= 8... \n",
213
+ "4 Email: [email protected] / any new user... \n",
214
+ "\n",
215
+ " Expected Result \n",
216
+ "0 User navigates to Home page on UMA application... \n",
217
+ "1 User should be able to login successfully and ... \n",
218
+ "2 Your order contains age-restricted items. Some... \n",
219
+ "3 User navigates to Home page on UMA application... \n",
220
+ "4 User navigates to Home page on UMA application... "
221
+ ]
222
+ },
223
+ "execution_count": 28,
224
+ "metadata": {},
225
+ "output_type": "execute_result"
226
+ }
227
+ ],
228
+ "source": [
229
+ "df = pd.read_csv(\"/Users/preethamreddygollapalli/Downloads/AI Test cases (2).csv\")\n",
230
+ "df.head(5)"
231
+ ]
232
+ },
233
+ {
234
+ "cell_type": "code",
235
+ "execution_count": 29,
236
+ "id": "b74aecf9",
237
+ "metadata": {},
238
+ "outputs": [
239
+ {
240
+ "data": {
241
+ "text/plain": [
242
+ "Story Name object\n",
243
+ "Test case Acceptance criteria object\n",
244
+ "Test Steps object\n",
245
+ "Test Data object\n",
246
+ "Expected Result object\n",
247
+ "dtype: object"
248
+ ]
249
+ },
250
+ "execution_count": 29,
251
+ "metadata": {},
252
+ "output_type": "execute_result"
253
+ }
254
+ ],
255
+ "source": [
256
+ "df.dtypes"
257
+ ]
258
+ },
259
+ {
260
+ "cell_type": "code",
261
+ "execution_count": 30,
262
+ "id": "1468adf1",
263
+ "metadata": {},
264
+ "outputs": [
265
+ {
266
+ "data": {
267
+ "text/plain": [
268
+ "(5, 5)"
269
+ ]
270
+ },
271
+ "execution_count": 30,
272
+ "metadata": {},
273
+ "output_type": "execute_result"
274
+ }
275
+ ],
276
+ "source": [
277
+ "df.shape"
278
+ ]
279
+ },
280
+ {
281
+ "cell_type": "code",
282
+ "execution_count": 31,
283
+ "id": "bf818e79",
284
+ "metadata": {},
285
+ "outputs": [
286
+ {
287
+ "data": {
288
+ "text/html": [
289
+ "<div>\n",
290
+ "<style scoped>\n",
291
+ " .dataframe tbody tr th:only-of-type {\n",
292
+ " vertical-align: middle;\n",
293
+ " }\n",
294
+ "\n",
295
+ " .dataframe tbody tr th {\n",
296
+ " vertical-align: top;\n",
297
+ " }\n",
298
+ "\n",
299
+ " .dataframe thead th {\n",
300
+ " text-align: right;\n",
301
+ " }\n",
302
+ "</style>\n",
303
+ "<table border=\"1\" class=\"dataframe\">\n",
304
+ " <thead>\n",
305
+ " <tr style=\"text-align: right;\">\n",
306
+ " <th></th>\n",
307
+ " <th>Story Name</th>\n",
308
+ " <th>Test case Acceptance criteria</th>\n",
309
+ " <th>Test Steps</th>\n",
310
+ " <th>Test Data</th>\n",
311
+ " <th>Expected Result</th>\n",
312
+ " </tr>\n",
313
+ " </thead>\n",
314
+ " <tbody>\n",
315
+ " <tr>\n",
316
+ " <th>count</th>\n",
317
+ " <td>5</td>\n",
318
+ " <td>5</td>\n",
319
+ " <td>5</td>\n",
320
+ " <td>3</td>\n",
321
+ " <td>5</td>\n",
322
+ " </tr>\n",
323
+ " <tr>\n",
324
+ " <th>unique</th>\n",
325
+ " <td>5</td>\n",
326
+ " <td>5</td>\n",
327
+ " <td>5</td>\n",
328
+ " <td>3</td>\n",
329
+ " <td>5</td>\n",
330
+ " </tr>\n",
331
+ " <tr>\n",
332
+ " <th>top</th>\n",
333
+ " <td>ACIP-247941</td>\n",
334
+ " <td>Weekly Ad - tap on any product offer - tap on ...</td>\n",
335
+ " <td>User logs into UMA application with valid user...</td>\n",
336
+ " <td>Email: [email protected], Albertsons= 8...</td>\n",
337
+ " <td>User navigates to Home page on UMA application...</td>\n",
338
+ " </tr>\n",
339
+ " <tr>\n",
340
+ " <th>freq</th>\n",
341
+ " <td>1</td>\n",
342
+ " <td>1</td>\n",
343
+ " <td>1</td>\n",
344
+ " <td>1</td>\n",
345
+ " <td>1</td>\n",
346
+ " </tr>\n",
347
+ " </tbody>\n",
348
+ "</table>\n",
349
+ "</div>"
350
+ ],
351
+ "text/plain": [
352
+ " Story Name Test case Acceptance criteria \\\n",
353
+ "count 5 5 \n",
354
+ "unique 5 5 \n",
355
+ "top ACIP-247941 Weekly Ad - tap on any product offer - tap on ... \n",
356
+ "freq 1 1 \n",
357
+ "\n",
358
+ " Test Steps \\\n",
359
+ "count 5 \n",
360
+ "unique 5 \n",
361
+ "top User logs into UMA application with valid user... \n",
362
+ "freq 1 \n",
363
+ "\n",
364
+ " Test Data \\\n",
365
+ "count 3 \n",
366
+ "unique 3 \n",
367
+ "top Email: [email protected], Albertsons= 8... \n",
368
+ "freq 1 \n",
369
+ "\n",
370
+ " Expected Result \n",
371
+ "count 5 \n",
372
+ "unique 5 \n",
373
+ "top User navigates to Home page on UMA application... \n",
374
+ "freq 1 "
375
+ ]
376
+ },
377
+ "execution_count": 31,
378
+ "metadata": {},
379
+ "output_type": "execute_result"
380
+ }
381
+ ],
382
+ "source": [
383
+ "df.describe()"
384
+ ]
385
+ },
386
+ {
387
+ "cell_type": "code",
388
+ "execution_count": 32,
389
+ "id": "dd77a3b7",
390
+ "metadata": {},
391
+ "outputs": [
392
+ {
393
+ "data": {
394
+ "text/html": [
395
+ "<div>\n",
396
+ "<style scoped>\n",
397
+ " .dataframe tbody tr th:only-of-type {\n",
398
+ " vertical-align: middle;\n",
399
+ " }\n",
400
+ "\n",
401
+ " .dataframe tbody tr th {\n",
402
+ " vertical-align: top;\n",
403
+ " }\n",
404
+ "\n",
405
+ " .dataframe thead th {\n",
406
+ " text-align: right;\n",
407
+ " }\n",
408
+ "</style>\n",
409
+ "<table border=\"1\" class=\"dataframe\">\n",
410
+ " <thead>\n",
411
+ " <tr style=\"text-align: right;\">\n",
412
+ " <th></th>\n",
413
+ " <th>Test case Acceptance criteria</th>\n",
414
+ " <th>Test Steps</th>\n",
415
+ " <th>Expected Result</th>\n",
416
+ " </tr>\n",
417
+ " </thead>\n",
418
+ " <tbody>\n",
419
+ " <tr>\n",
420
+ " <th>0</th>\n",
421
+ " <td>Weekly Ad - tap on any product offer - tap on ...</td>\n",
422
+ " <td>User logs into UMA application with valid user...</td>\n",
423
+ " <td>User navigates to Home page on UMA application...</td>\n",
424
+ " </tr>\n",
425
+ " <tr>\n",
426
+ " <th>1</th>\n",
427
+ " <td>As a PdM, I want to ensure that the L2 entry p...</td>\n",
428
+ " <td>Login UMA app with valid email/ mobile no. Ver...</td>\n",
429
+ " <td>User should be able to login successfully and ...</td>\n",
430
+ " </tr>\n",
431
+ " <tr>\n",
432
+ " <th>2</th>\n",
433
+ " <td>As a customer, I should see age restriction me...</td>\n",
434
+ " <td>Login UMA app with valid email/ mobile no. Ent...</td>\n",
435
+ " <td>Your order contains age-restricted items. Some...</td>\n",
436
+ " </tr>\n",
437
+ " <tr>\n",
438
+ " <th>3</th>\n",
439
+ " <td>Verify Banner navigation for the below banners...</td>\n",
440
+ " <td>User logs into UMA application with valid user...</td>\n",
441
+ " <td>User navigates to Home page on UMA application...</td>\n",
442
+ " </tr>\n",
443
+ " <tr>\n",
444
+ " <th>4</th>\n",
445
+ " <td>Display the Meal Plans banner based on the ban...</td>\n",
446
+ " <td>User logs into UMA application with valid user...</td>\n",
447
+ " <td>User navigates to Home page on UMA application...</td>\n",
448
+ " </tr>\n",
449
+ " </tbody>\n",
450
+ "</table>\n",
451
+ "</div>"
452
+ ],
453
+ "text/plain": [
454
+ " Test case Acceptance criteria \\\n",
455
+ "0 Weekly Ad - tap on any product offer - tap on ... \n",
456
+ "1 As a PdM, I want to ensure that the L2 entry p... \n",
457
+ "2 As a customer, I should see age restriction me... \n",
458
+ "3 Verify Banner navigation for the below banners... \n",
459
+ "4 Display the Meal Plans banner based on the ban... \n",
460
+ "\n",
461
+ " Test Steps \\\n",
462
+ "0 User logs into UMA application with valid user... \n",
463
+ "1 Login UMA app with valid email/ mobile no. Ver... \n",
464
+ "2 Login UMA app with valid email/ mobile no. Ent... \n",
465
+ "3 User logs into UMA application with valid user... \n",
466
+ "4 User logs into UMA application with valid user... \n",
467
+ "\n",
468
+ " Expected Result \n",
469
+ "0 User navigates to Home page on UMA application... \n",
470
+ "1 User should be able to login successfully and ... \n",
471
+ "2 Your order contains age-restricted items. Some... \n",
472
+ "3 User navigates to Home page on UMA application... \n",
473
+ "4 User navigates to Home page on UMA application... "
474
+ ]
475
+ },
476
+ "execution_count": 32,
477
+ "metadata": {},
478
+ "output_type": "execute_result"
479
+ }
480
+ ],
481
+ "source": [
482
+ "df = df.drop(['Story Name', 'Test Data'], axis = 1)\n",
483
+ "df.head(5)"
484
+ ]
485
+ },
486
+ {
487
+ "cell_type": "code",
488
+ "execution_count": 9,
489
+ "id": "b775b74d",
490
+ "metadata": {},
491
+ "outputs": [
492
+ {
493
+ "data": {
494
+ "text/html": [
495
+ "<div>\n",
496
+ "<style scoped>\n",
497
+ " .dataframe tbody tr th:only-of-type {\n",
498
+ " vertical-align: middle;\n",
499
+ " }\n",
500
+ "\n",
501
+ " .dataframe tbody tr th {\n",
502
+ " vertical-align: top;\n",
503
+ " }\n",
504
+ "\n",
505
+ " .dataframe thead th {\n",
506
+ " text-align: right;\n",
507
+ " }\n",
508
+ "</style>\n",
509
+ "<table border=\"1\" class=\"dataframe\">\n",
510
+ " <thead>\n",
511
+ " <tr style=\"text-align: right;\">\n",
512
+ " <th></th>\n",
513
+ " <th>Test case Acceptance criteria</th>\n",
514
+ " <th>Test Steps</th>\n",
515
+ " <th>Expected Result</th>\n",
516
+ " <th>Test_case_Acceptance_criteria</th>\n",
517
+ " <th>Test_Steps</th>\n",
518
+ " <th>Expected_Result</th>\n",
519
+ " </tr>\n",
520
+ " </thead>\n",
521
+ " <tbody>\n",
522
+ " <tr>\n",
523
+ " <th>0</th>\n",
524
+ " <td>Weekly Ad - tap on any product offer - tap on ...</td>\n",
525
+ " <td>User logs into UMA application with valid user...</td>\n",
526
+ " <td>User navigates to Home page on UMA application...</td>\n",
527
+ " <td>[Weekly, Ad, -, tap, on, any, product, offer, ...</td>\n",
528
+ " <td>[User, logs, into, UMA, application, with, val...</td>\n",
529
+ " <td>[User, navigates, to, Home, page, on, UMA, app...</td>\n",
530
+ " </tr>\n",
531
+ " <tr>\n",
532
+ " <th>1</th>\n",
533
+ " <td>As a PdM, I want to ensure that the L2 entry p...</td>\n",
534
+ " <td>Login UMA app with valid email/ mobile no. Ver...</td>\n",
535
+ " <td>User should be able to login successfully and ...</td>\n",
536
+ " <td>[As, a, PdM,, I, want, to, ensure, that, the, ...</td>\n",
537
+ " <td>[Login, UMA, app, with, valid, email/, mobile,...</td>\n",
538
+ " <td>[User, should, be, able, to, login, successful...</td>\n",
539
+ " </tr>\n",
540
+ " <tr>\n",
541
+ " <th>2</th>\n",
542
+ " <td>As a customer, I should see age restriction me...</td>\n",
543
+ " <td>Login UMA app with valid email/ mobile no. Ent...</td>\n",
544
+ " <td>Your order contains age-restricted items. Some...</td>\n",
545
+ " <td>[As, a, customer,, I, should, see, age, restri...</td>\n",
546
+ " <td>[Login, UMA, app, with, valid, email/, mobile,...</td>\n",
547
+ " <td>[Your, order, contains, age-restricted, items....</td>\n",
548
+ " </tr>\n",
549
+ " <tr>\n",
550
+ " <th>3</th>\n",
551
+ " <td>Verify Banner navigation for the below banners...</td>\n",
552
+ " <td>User logs into UMA application with valid user...</td>\n",
553
+ " <td>User navigates to Home page on UMA application...</td>\n",
554
+ " <td>[Verify, Banner, navigation, for, the, below, ...</td>\n",
555
+ " <td>[User, logs, into, UMA, application, with, val...</td>\n",
556
+ " <td>[User, navigates, to, Home, page, on, UMA, app...</td>\n",
557
+ " </tr>\n",
558
+ " <tr>\n",
559
+ " <th>4</th>\n",
560
+ " <td>Display the Meal Plans banner based on the ban...</td>\n",
561
+ " <td>User logs into UMA application with valid user...</td>\n",
562
+ " <td>User navigates to Home page on UMA application...</td>\n",
563
+ " <td>[Display, the, Meal, Plans, banner, based, on,...</td>\n",
564
+ " <td>[User, logs, into, UMA, application, with, val...</td>\n",
565
+ " <td>[User, navigates, to, Home, page, on, UMA, app...</td>\n",
566
+ " </tr>\n",
567
+ " </tbody>\n",
568
+ "</table>\n",
569
+ "</div>"
570
+ ],
571
+ "text/plain": [
572
+ " Test case Acceptance criteria \\\n",
573
+ "0 Weekly Ad - tap on any product offer - tap on ... \n",
574
+ "1 As a PdM, I want to ensure that the L2 entry p... \n",
575
+ "2 As a customer, I should see age restriction me... \n",
576
+ "3 Verify Banner navigation for the below banners... \n",
577
+ "4 Display the Meal Plans banner based on the ban... \n",
578
+ "\n",
579
+ " Test Steps \\\n",
580
+ "0 User logs into UMA application with valid user... \n",
581
+ "1 Login UMA app with valid email/ mobile no. Ver... \n",
582
+ "2 Login UMA app with valid email/ mobile no. Ent... \n",
583
+ "3 User logs into UMA application with valid user... \n",
584
+ "4 User logs into UMA application with valid user... \n",
585
+ "\n",
586
+ " Expected Result \\\n",
587
+ "0 User navigates to Home page on UMA application... \n",
588
+ "1 User should be able to login successfully and ... \n",
589
+ "2 Your order contains age-restricted items. Some... \n",
590
+ "3 User navigates to Home page on UMA application... \n",
591
+ "4 User navigates to Home page on UMA application... \n",
592
+ "\n",
593
+ " Test_case_Acceptance_criteria \\\n",
594
+ "0 [Weekly, Ad, -, tap, on, any, product, offer, ... \n",
595
+ "1 [As, a, PdM,, I, want, to, ensure, that, the, ... \n",
596
+ "2 [As, a, customer,, I, should, see, age, restri... \n",
597
+ "3 [Verify, Banner, navigation, for, the, below, ... \n",
598
+ "4 [Display, the, Meal, Plans, banner, based, on,... \n",
599
+ "\n",
600
+ " Test_Steps \\\n",
601
+ "0 [User, logs, into, UMA, application, with, val... \n",
602
+ "1 [Login, UMA, app, with, valid, email/, mobile,... \n",
603
+ "2 [Login, UMA, app, with, valid, email/, mobile,... \n",
604
+ "3 [User, logs, into, UMA, application, with, val... \n",
605
+ "4 [User, logs, into, UMA, application, with, val... \n",
606
+ "\n",
607
+ " Expected_Result \n",
608
+ "0 [User, navigates, to, Home, page, on, UMA, app... \n",
609
+ "1 [User, should, be, able, to, login, successful... \n",
610
+ "2 [Your, order, contains, age-restricted, items.... \n",
611
+ "3 [User, navigates, to, Home, page, on, UMA, app... \n",
612
+ "4 [User, navigates, to, Home, page, on, UMA, app... "
613
+ ]
614
+ },
615
+ "execution_count": 9,
616
+ "metadata": {},
617
+ "output_type": "execute_result"
618
+ }
619
+ ],
620
+ "source": [
621
+ "# Tokenize the strings by splitting on spaces\n",
622
+ "df['Test_case_Acceptance_criteria'] = df['Test case Acceptance criteria'].apply(lambda x: x.split() if isinstance(x, str) else [])\n",
623
+ "df['Test_Steps'] = df['Test Steps'].apply(lambda x: x.split() if isinstance(x, str) else [])\n",
624
+ "df['Expected_Result'] = df['Expected Result'].apply(lambda x: x.split() if isinstance(x, str) else [])\n",
625
+ "\n",
626
+ "# Inspect the tokenized data\n",
627
+ "df.head(5)"
628
+ ]
629
+ },
630
+ {
631
+ "cell_type": "code",
632
+ "execution_count": 10,
633
+ "id": "61e06a49",
634
+ "metadata": {},
635
+ "outputs": [
636
+ {
637
+ "name": "stdout",
638
+ "output_type": "stream",
639
+ "text": [
640
+ "Test case Acceptance criteria 0\n",
641
+ "Test Steps 0\n",
642
+ "Expected Result 0\n",
643
+ "Test_case_Acceptance_criteria 0\n",
644
+ "Test_Steps 0\n",
645
+ "Expected_Result 0\n",
646
+ "dtype: int64\n"
647
+ ]
648
+ }
649
+ ],
650
+ "source": [
651
+ "print(df.isna().sum())"
652
+ ]
653
+ },
654
+ {
655
+ "cell_type": "code",
656
+ "execution_count": 11,
657
+ "id": "ca46d0a6",
658
+ "metadata": {},
659
+ "outputs": [
660
+ {
661
+ "data": {
662
+ "text/html": [
663
+ "<div>\n",
664
+ "<style scoped>\n",
665
+ " .dataframe tbody tr th:only-of-type {\n",
666
+ " vertical-align: middle;\n",
667
+ " }\n",
668
+ "\n",
669
+ " .dataframe tbody tr th {\n",
670
+ " vertical-align: top;\n",
671
+ " }\n",
672
+ "\n",
673
+ " .dataframe thead th {\n",
674
+ " text-align: right;\n",
675
+ " }\n",
676
+ "</style>\n",
677
+ "<table border=\"1\" class=\"dataframe\">\n",
678
+ " <thead>\n",
679
+ " <tr style=\"text-align: right;\">\n",
680
+ " <th></th>\n",
681
+ " <th>Test_case_Acceptance_criteria</th>\n",
682
+ " <th>Test_Steps</th>\n",
683
+ " <th>Expected_Result</th>\n",
684
+ " </tr>\n",
685
+ " </thead>\n",
686
+ " <tbody>\n",
687
+ " <tr>\n",
688
+ " <th>0</th>\n",
689
+ " <td>[Weekly, Ad, -, tap, on, any, product, offer, ...</td>\n",
690
+ " <td>[User, logs, into, UMA, application, with, val...</td>\n",
691
+ " <td>[User, navigates, to, Home, page, on, UMA, app...</td>\n",
692
+ " </tr>\n",
693
+ " <tr>\n",
694
+ " <th>1</th>\n",
695
+ " <td>[As, a, PdM,, I, want, to, ensure, that, the, ...</td>\n",
696
+ " <td>[Login, UMA, app, with, valid, email/, mobile,...</td>\n",
697
+ " <td>[User, should, be, able, to, login, successful...</td>\n",
698
+ " </tr>\n",
699
+ " <tr>\n",
700
+ " <th>2</th>\n",
701
+ " <td>[As, a, customer,, I, should, see, age, restri...</td>\n",
702
+ " <td>[Login, UMA, app, with, valid, email/, mobile,...</td>\n",
703
+ " <td>[Your, order, contains, age-restricted, items....</td>\n",
704
+ " </tr>\n",
705
+ " <tr>\n",
706
+ " <th>3</th>\n",
707
+ " <td>[Verify, Banner, navigation, for, the, below, ...</td>\n",
708
+ " <td>[User, logs, into, UMA, application, with, val...</td>\n",
709
+ " <td>[User, navigates, to, Home, page, on, UMA, app...</td>\n",
710
+ " </tr>\n",
711
+ " <tr>\n",
712
+ " <th>4</th>\n",
713
+ " <td>[Display, the, Meal, Plans, banner, based, on,...</td>\n",
714
+ " <td>[User, logs, into, UMA, application, with, val...</td>\n",
715
+ " <td>[User, navigates, to, Home, page, on, UMA, app...</td>\n",
716
+ " </tr>\n",
717
+ " </tbody>\n",
718
+ "</table>\n",
719
+ "</div>"
720
+ ],
721
+ "text/plain": [
722
+ " Test_case_Acceptance_criteria \\\n",
723
+ "0 [Weekly, Ad, -, tap, on, any, product, offer, ... \n",
724
+ "1 [As, a, PdM,, I, want, to, ensure, that, the, ... \n",
725
+ "2 [As, a, customer,, I, should, see, age, restri... \n",
726
+ "3 [Verify, Banner, navigation, for, the, below, ... \n",
727
+ "4 [Display, the, Meal, Plans, banner, based, on,... \n",
728
+ "\n",
729
+ " Test_Steps \\\n",
730
+ "0 [User, logs, into, UMA, application, with, val... \n",
731
+ "1 [Login, UMA, app, with, valid, email/, mobile,... \n",
732
+ "2 [Login, UMA, app, with, valid, email/, mobile,... \n",
733
+ "3 [User, logs, into, UMA, application, with, val... \n",
734
+ "4 [User, logs, into, UMA, application, with, val... \n",
735
+ "\n",
736
+ " Expected_Result \n",
737
+ "0 [User, navigates, to, Home, page, on, UMA, app... \n",
738
+ "1 [User, should, be, able, to, login, successful... \n",
739
+ "2 [Your, order, contains, age-restricted, items.... \n",
740
+ "3 [User, navigates, to, Home, page, on, UMA, app... \n",
741
+ "4 [User, navigates, to, Home, page, on, UMA, app... "
742
+ ]
743
+ },
744
+ "execution_count": 11,
745
+ "metadata": {},
746
+ "output_type": "execute_result"
747
+ }
748
+ ],
749
+ "source": [
750
+ "df = df.drop(['Test case Acceptance criteria', 'Test Steps', 'Expected Result'], axis = 1)\n",
751
+ "df.head(5)"
752
+ ]
753
+ },
754
+ {
755
+ "cell_type": "code",
756
+ "execution_count": 12,
757
+ "id": "f211722a",
758
+ "metadata": {},
759
+ "outputs": [
760
+ {
761
+ "data": {
762
+ "text/html": [
763
+ "<div>\n",
764
+ "<style scoped>\n",
765
+ " .dataframe tbody tr th:only-of-type {\n",
766
+ " vertical-align: middle;\n",
767
+ " }\n",
768
+ "\n",
769
+ " .dataframe tbody tr th {\n",
770
+ " vertical-align: top;\n",
771
+ " }\n",
772
+ "\n",
773
+ " .dataframe thead th {\n",
774
+ " text-align: right;\n",
775
+ " }\n",
776
+ "</style>\n",
777
+ "<table border=\"1\" class=\"dataframe\">\n",
778
+ " <thead>\n",
779
+ " <tr style=\"text-align: right;\">\n",
780
+ " <th></th>\n",
781
+ " <th>Test_case_Acceptance_criteria</th>\n",
782
+ " <th>Test_Steps</th>\n",
783
+ " <th>Expected_Result</th>\n",
784
+ " </tr>\n",
785
+ " </thead>\n",
786
+ " <tbody>\n",
787
+ " <tr>\n",
788
+ " <th>0</th>\n",
789
+ " <td>[Weekly, Ad, -, tap, product, offer, -, tap, A...</td>\n",
790
+ " <td>[User, logs, UMA, application, valid, user's, ...</td>\n",
791
+ " <td>[User, navigates, Home, page, UMA, application...</td>\n",
792
+ " </tr>\n",
793
+ " <tr>\n",
794
+ " <th>1</th>\n",
795
+ " <td>[PdM,, want, ensure, L2, entry, points, workin...</td>\n",
796
+ " <td>[Login, UMA, app, valid, email/, mobile, no., ...</td>\n",
797
+ " <td>[User, able, login, successfully, home, page, ...</td>\n",
798
+ " </tr>\n",
799
+ " <tr>\n",
800
+ " <th>2</th>\n",
801
+ " <td>[customer,, see, age, restriction, message, ch...</td>\n",
802
+ " <td>[Login, UMA, app, valid, email/, mobile, no., ...</td>\n",
803
+ " <td>[order, contains, age-restricted, items., Some...</td>\n",
804
+ " </tr>\n",
805
+ " <tr>\n",
806
+ " <th>3</th>\n",
807
+ " <td>[Verify, Banner, navigation, banners, places, ...</td>\n",
808
+ " <td>[User, logs, UMA, application, valid, user's, ...</td>\n",
809
+ " <td>[User, navigates, Home, page, UMA, application...</td>\n",
810
+ " </tr>\n",
811
+ " <tr>\n",
812
+ " <th>4</th>\n",
813
+ " <td>[Display, Meal, Plans, banner, based, banner.,...</td>\n",
814
+ " <td>[User, logs, UMA, application, valid, user's, ...</td>\n",
815
+ " <td>[User, navigates, Home, page, UMA, application...</td>\n",
816
+ " </tr>\n",
817
+ " </tbody>\n",
818
+ "</table>\n",
819
+ "</div>"
820
+ ],
821
+ "text/plain": [
822
+ " Test_case_Acceptance_criteria \\\n",
823
+ "0 [Weekly, Ad, -, tap, product, offer, -, tap, A... \n",
824
+ "1 [PdM,, want, ensure, L2, entry, points, workin... \n",
825
+ "2 [customer,, see, age, restriction, message, ch... \n",
826
+ "3 [Verify, Banner, navigation, banners, places, ... \n",
827
+ "4 [Display, Meal, Plans, banner, based, banner.,... \n",
828
+ "\n",
829
+ " Test_Steps \\\n",
830
+ "0 [User, logs, UMA, application, valid, user's, ... \n",
831
+ "1 [Login, UMA, app, valid, email/, mobile, no., ... \n",
832
+ "2 [Login, UMA, app, valid, email/, mobile, no., ... \n",
833
+ "3 [User, logs, UMA, application, valid, user's, ... \n",
834
+ "4 [User, logs, UMA, application, valid, user's, ... \n",
835
+ "\n",
836
+ " Expected_Result \n",
837
+ "0 [User, navigates, Home, page, UMA, application... \n",
838
+ "1 [User, able, login, successfully, home, page, ... \n",
839
+ "2 [order, contains, age-restricted, items., Some... \n",
840
+ "3 [User, navigates, Home, page, UMA, application... \n",
841
+ "4 [User, navigates, Home, page, UMA, application... "
842
+ ]
843
+ },
844
+ "execution_count": 12,
845
+ "metadata": {},
846
+ "output_type": "execute_result"
847
+ }
848
+ ],
849
+ "source": [
850
+ "stop_words = set(stopwords.words('english'))\n",
851
+ "\n",
852
+ "# Function to remove stopwords\n",
853
+ "def remove_stopwords(tokens):\n",
854
+ " return [token for token in tokens if token.lower() not in stop_words]\n",
855
+ "\n",
856
+ "# Apply stopwords removal\n",
857
+ "df['Test_case_Acceptance_criteria'] = df['Test_case_Acceptance_criteria'].apply(remove_stopwords)\n",
858
+ "df['Test_Steps'] = df['Test_Steps'].apply(remove_stopwords)\n",
859
+ "df['Expected_Result'] = df['Expected_Result'].apply(remove_stopwords)\n",
860
+ "\n",
861
+ "# Inspect the data after stopwords removal\n",
862
+ "df.head(5)"
863
+ ]
864
+ },
865
+ {
866
+ "cell_type": "code",
867
+ "execution_count": 14,
868
+ "id": "057555fe",
869
+ "metadata": {},
870
+ "outputs": [
871
+ {
872
+ "data": {
873
+ "text/html": [
874
+ "<div>\n",
875
+ "<style scoped>\n",
876
+ " .dataframe tbody tr th:only-of-type {\n",
877
+ " vertical-align: middle;\n",
878
+ " }\n",
879
+ "\n",
880
+ " .dataframe tbody tr th {\n",
881
+ " vertical-align: top;\n",
882
+ " }\n",
883
+ "\n",
884
+ " .dataframe thead th {\n",
885
+ " text-align: right;\n",
886
+ " }\n",
887
+ "</style>\n",
888
+ "<table border=\"1\" class=\"dataframe\">\n",
889
+ " <thead>\n",
890
+ " <tr style=\"text-align: right;\">\n",
891
+ " <th></th>\n",
892
+ " <th>Test_case_Acceptance_criteria</th>\n",
893
+ " <th>Test_Steps</th>\n",
894
+ " <th>Expected_Result</th>\n",
895
+ " </tr>\n",
896
+ " </thead>\n",
897
+ " <tbody>\n",
898
+ " <tr>\n",
899
+ " <th>0</th>\n",
900
+ " <td>[Weekly, Ad, -, tap, product, offer, -, tap, A...</td>\n",
901
+ " <td>[User, log, UMA, application, valid, user's, c...</td>\n",
902
+ " <td>[User, navigate, Home, page, UMA, application....</td>\n",
903
+ " </tr>\n",
904
+ " <tr>\n",
905
+ " <th>1</th>\n",
906
+ " <td>[PdM,, want, ensure, L2, entry, point, work, f...</td>\n",
907
+ " <td>[Login, UMA, app, valid, email/, mobile, no., ...</td>\n",
908
+ " <td>[User, able, login, successfully, home, page, ...</td>\n",
909
+ " </tr>\n",
910
+ " <tr>\n",
911
+ " <th>2</th>\n",
912
+ " <td>[customer,, see, age, restriction, message, ch...</td>\n",
913
+ " <td>[Login, UMA, app, valid, email/, mobile, no., ...</td>\n",
914
+ " <td>[order, contain, age-restricted, items., Someo...</td>\n",
915
+ " </tr>\n",
916
+ " <tr>\n",
917
+ " <th>3</th>\n",
918
+ " <td>[Verify, Banner, navigation, banner, place, di...</td>\n",
919
+ " <td>[User, log, UMA, application, valid, user's, c...</td>\n",
920
+ " <td>[User, navigate, Home, page, UMA, application,...</td>\n",
921
+ " </tr>\n",
922
+ " <tr>\n",
923
+ " <th>4</th>\n",
924
+ " <td>[Display, Meal, Plans, banner, base, banner., ...</td>\n",
925
+ " <td>[User, log, UMA, application, valid, user's, c...</td>\n",
926
+ " <td>[User, navigate, Home, page, UMA, application....</td>\n",
927
+ " </tr>\n",
928
+ " </tbody>\n",
929
+ "</table>\n",
930
+ "</div>"
931
+ ],
932
+ "text/plain": [
933
+ " Test_case_Acceptance_criteria \\\n",
934
+ "0 [Weekly, Ad, -, tap, product, offer, -, tap, A... \n",
935
+ "1 [PdM,, want, ensure, L2, entry, point, work, f... \n",
936
+ "2 [customer,, see, age, restriction, message, ch... \n",
937
+ "3 [Verify, Banner, navigation, banner, place, di... \n",
938
+ "4 [Display, Meal, Plans, banner, base, banner., ... \n",
939
+ "\n",
940
+ " Test_Steps \\\n",
941
+ "0 [User, log, UMA, application, valid, user's, c... \n",
942
+ "1 [Login, UMA, app, valid, email/, mobile, no., ... \n",
943
+ "2 [Login, UMA, app, valid, email/, mobile, no., ... \n",
944
+ "3 [User, log, UMA, application, valid, user's, c... \n",
945
+ "4 [User, log, UMA, application, valid, user's, c... \n",
946
+ "\n",
947
+ " Expected_Result \n",
948
+ "0 [User, navigate, Home, page, UMA, application.... \n",
949
+ "1 [User, able, login, successfully, home, page, ... \n",
950
+ "2 [order, contain, age-restricted, items., Someo... \n",
951
+ "3 [User, navigate, Home, page, UMA, application,... \n",
952
+ "4 [User, navigate, Home, page, UMA, application.... "
953
+ ]
954
+ },
955
+ "execution_count": 14,
956
+ "metadata": {},
957
+ "output_type": "execute_result"
958
+ }
959
+ ],
960
+ "source": [
961
+ "lemmatizer = WordNetLemmatizer()\n",
962
+ "\n",
963
+ "# Function to lemmatize tokens\n",
964
+ "def lemmatize_tokens(tokens):\n",
965
+ " return [lemmatizer.lemmatize(token, pos = 'v') for token in tokens]\n",
966
+ "\n",
967
+ "# Apply lemmatization\n",
968
+ "df['Test_case_Acceptance_criteria'] = df['Test_case_Acceptance_criteria'].apply(lemmatize_tokens)\n",
969
+ "df['Test_Steps'] = df['Test_Steps'].apply(lemmatize_tokens)\n",
970
+ "df['Expected_Result'] = df['Expected_Result'].apply(lemmatize_tokens)\n",
971
+ "\n",
972
+ "# Inspect the data after lemmatization\n",
973
+ "df.head(5)"
974
+ ]
975
+ },
976
+ {
977
+ "cell_type": "code",
978
+ "execution_count": 15,
979
+ "id": "249dd661",
980
+ "metadata": {},
981
+ "outputs": [
982
+ {
983
+ "data": {
984
+ "text/html": [
985
+ "<div>\n",
986
+ "<style scoped>\n",
987
+ " .dataframe tbody tr th:only-of-type {\n",
988
+ " vertical-align: middle;\n",
989
+ " }\n",
990
+ "\n",
991
+ " .dataframe tbody tr th {\n",
992
+ " vertical-align: top;\n",
993
+ " }\n",
994
+ "\n",
995
+ " .dataframe thead th {\n",
996
+ " text-align: right;\n",
997
+ " }\n",
998
+ "</style>\n",
999
+ "<table border=\"1\" class=\"dataframe\">\n",
1000
+ " <thead>\n",
1001
+ " <tr style=\"text-align: right;\">\n",
1002
+ " <th></th>\n",
1003
+ " <th>Test_case_Acceptance_criteria</th>\n",
1004
+ " <th>Test_Steps</th>\n",
1005
+ " <th>Expected_Result</th>\n",
1006
+ " <th>Acceptance_criteria_embeddings</th>\n",
1007
+ " <th>Test_Steps_embeddings</th>\n",
1008
+ " <th>Expected_Result_embeddings</th>\n",
1009
+ " </tr>\n",
1010
+ " </thead>\n",
1011
+ " <tbody>\n",
1012
+ " <tr>\n",
1013
+ " <th>0</th>\n",
1014
+ " <td>[Weekly, Ad, -, tap, product, offer, -, tap, A...</td>\n",
1015
+ " <td>[User, log, UMA, application, valid, user's, c...</td>\n",
1016
+ " <td>[User, navigate, Home, page, UMA, application....</td>\n",
1017
+ " <td>[2.9078821e-05, 0.0009868374, 0.0006897929, 0....</td>\n",
1018
+ " <td>[-0.00090376585, 0.0015351841, 0.00077817513, ...</td>\n",
1019
+ " <td>[-0.00075740286, 0.0017703008, 7.018649e-05, 0...</td>\n",
1020
+ " </tr>\n",
1021
+ " <tr>\n",
1022
+ " <th>1</th>\n",
1023
+ " <td>[PdM,, want, ensure, L2, entry, point, work, f...</td>\n",
1024
+ " <td>[Login, UMA, app, valid, email/, mobile, no., ...</td>\n",
1025
+ " <td>[User, able, login, successfully, home, page, ...</td>\n",
1026
+ " <td>[4.9687253e-05, -0.0002648631, -0.0011476703, ...</td>\n",
1027
+ " <td>[-0.0007915226, 0.0008593759, 0.00056966604, -...</td>\n",
1028
+ " <td>[0.00035405744, 0.0019673503, -0.00071650144, ...</td>\n",
1029
+ " </tr>\n",
1030
+ " <tr>\n",
1031
+ " <th>2</th>\n",
1032
+ " <td>[customer,, see, age, restriction, message, ch...</td>\n",
1033
+ " <td>[Login, UMA, app, valid, email/, mobile, no., ...</td>\n",
1034
+ " <td>[order, contain, age-restricted, items., Someo...</td>\n",
1035
+ " <td>[-0.0019043502, -0.0007733393, -0.00047627056,...</td>\n",
1036
+ " <td>[-0.0010107799, -0.0004325275, 0.0025766247, 0...</td>\n",
1037
+ " <td>[-0.0022062701, -0.0032818727, 0.0012025184, -...</td>\n",
1038
+ " </tr>\n",
1039
+ " <tr>\n",
1040
+ " <th>3</th>\n",
1041
+ " <td>[Verify, Banner, navigation, banner, place, di...</td>\n",
1042
+ " <td>[User, log, UMA, application, valid, user's, c...</td>\n",
1043
+ " <td>[User, navigate, Home, page, UMA, application,...</td>\n",
1044
+ " <td>[0.00079187436, 0.001024591, -0.00025014183, -...</td>\n",
1045
+ " <td>[-0.00082380656, 0.0015335361, 0.0008829938, 0...</td>\n",
1046
+ " <td>[-0.0007905865, 0.0017265088, 0.00018967084, 0...</td>\n",
1047
+ " </tr>\n",
1048
+ " <tr>\n",
1049
+ " <th>4</th>\n",
1050
+ " <td>[Display, Meal, Plans, banner, base, banner., ...</td>\n",
1051
+ " <td>[User, log, UMA, application, valid, user's, c...</td>\n",
1052
+ " <td>[User, navigate, Home, page, UMA, application....</td>\n",
1053
+ " <td>[0.0006987122, 0.0025012388, 0.00094601634, -0...</td>\n",
1054
+ " <td>[-0.0006520124, 0.00076459144, 0.0014451812, 0...</td>\n",
1055
+ " <td>[-0.00028285536, 0.0013591949, -0.00073397934,...</td>\n",
1056
+ " </tr>\n",
1057
+ " </tbody>\n",
1058
+ "</table>\n",
1059
+ "</div>"
1060
+ ],
1061
+ "text/plain": [
1062
+ " Test_case_Acceptance_criteria \\\n",
1063
+ "0 [Weekly, Ad, -, tap, product, offer, -, tap, A... \n",
1064
+ "1 [PdM,, want, ensure, L2, entry, point, work, f... \n",
1065
+ "2 [customer,, see, age, restriction, message, ch... \n",
1066
+ "3 [Verify, Banner, navigation, banner, place, di... \n",
1067
+ "4 [Display, Meal, Plans, banner, base, banner., ... \n",
1068
+ "\n",
1069
+ " Test_Steps \\\n",
1070
+ "0 [User, log, UMA, application, valid, user's, c... \n",
1071
+ "1 [Login, UMA, app, valid, email/, mobile, no., ... \n",
1072
+ "2 [Login, UMA, app, valid, email/, mobile, no., ... \n",
1073
+ "3 [User, log, UMA, application, valid, user's, c... \n",
1074
+ "4 [User, log, UMA, application, valid, user's, c... \n",
1075
+ "\n",
1076
+ " Expected_Result \\\n",
1077
+ "0 [User, navigate, Home, page, UMA, application.... \n",
1078
+ "1 [User, able, login, successfully, home, page, ... \n",
1079
+ "2 [order, contain, age-restricted, items., Someo... \n",
1080
+ "3 [User, navigate, Home, page, UMA, application,... \n",
1081
+ "4 [User, navigate, Home, page, UMA, application.... \n",
1082
+ "\n",
1083
+ " Acceptance_criteria_embeddings \\\n",
1084
+ "0 [2.9078821e-05, 0.0009868374, 0.0006897929, 0.... \n",
1085
+ "1 [4.9687253e-05, -0.0002648631, -0.0011476703, ... \n",
1086
+ "2 [-0.0019043502, -0.0007733393, -0.00047627056,... \n",
1087
+ "3 [0.00079187436, 0.001024591, -0.00025014183, -... \n",
1088
+ "4 [0.0006987122, 0.0025012388, 0.00094601634, -0... \n",
1089
+ "\n",
1090
+ " Test_Steps_embeddings \\\n",
1091
+ "0 [-0.00090376585, 0.0015351841, 0.00077817513, ... \n",
1092
+ "1 [-0.0007915226, 0.0008593759, 0.00056966604, -... \n",
1093
+ "2 [-0.0010107799, -0.0004325275, 0.0025766247, 0... \n",
1094
+ "3 [-0.00082380656, 0.0015335361, 0.0008829938, 0... \n",
1095
+ "4 [-0.0006520124, 0.00076459144, 0.0014451812, 0... \n",
1096
+ "\n",
1097
+ " Expected_Result_embeddings \n",
1098
+ "0 [-0.00075740286, 0.0017703008, 7.018649e-05, 0... \n",
1099
+ "1 [0.00035405744, 0.0019673503, -0.00071650144, ... \n",
1100
+ "2 [-0.0022062701, -0.0032818727, 0.0012025184, -... \n",
1101
+ "3 [-0.0007905865, 0.0017265088, 0.00018967084, 0... \n",
1102
+ "4 [-0.00028285536, 0.0013591949, -0.00073397934,... "
1103
+ ]
1104
+ },
1105
+ "execution_count": 15,
1106
+ "metadata": {},
1107
+ "output_type": "execute_result"
1108
+ }
1109
+ ],
1110
+ "source": [
1111
+ "all_tokens = df['Test_case_Acceptance_criteria'].tolist() + df['Test_Steps'].tolist() + df['Expected_Result'].tolist()\n",
1112
+ "\n",
1113
+ "# Train the Word2Vec model\n",
1114
+ "word2vec_model = Word2Vec(sentences=all_tokens, vector_size=100, window=5, min_count=1, sg=0)\n",
1115
+ "\n",
1116
+ "# Function to get embeddings for tokens\n",
1117
+ "def get_embeddings(tokens, model):\n",
1118
+ " embeddings = []\n",
1119
+ " for token in tokens:\n",
1120
+ " if token in model.wv:\n",
1121
+ " embeddings.append(model.wv[token])\n",
1122
+ " else:\n",
1123
+ " embeddings.append(np.zeros(model.vector_size)) # Handle out-of-vocabulary words\n",
1124
+ " return np.mean(embeddings, axis=0) # Mean vector for the document\n",
1125
+ "\n",
1126
+ "# Apply the function to each column\n",
1127
+ "df['Acceptance_criteria_embeddings'] = df['Test_case_Acceptance_criteria'].apply(lambda tokens: get_embeddings(tokens, word2vec_model) if tokens else np.nan)\n",
1128
+ "df['Test_Steps_embeddings'] = df['Test_Steps'].apply(lambda tokens: get_embeddings(tokens, word2vec_model) if tokens else np.nan)\n",
1129
+ "df['Expected_Result_embeddings'] = df['Expected_Result'].apply(lambda tokens: get_embeddings(tokens, word2vec_model) if tokens else np.nan)\n",
1130
+ "\n",
1131
+ "# Verify the final DataFrame\n",
1132
+ "df.head(5)"
1133
+ ]
1134
+ },
1135
+ {
1136
+ "cell_type": "code",
1137
+ "execution_count": 16,
1138
+ "id": "f36d8564",
1139
+ "metadata": {},
1140
+ "outputs": [
1141
+ {
1142
+ "data": {
1143
+ "text/html": [
1144
+ "<div>\n",
1145
+ "<style scoped>\n",
1146
+ " .dataframe tbody tr th:only-of-type {\n",
1147
+ " vertical-align: middle;\n",
1148
+ " }\n",
1149
+ "\n",
1150
+ " .dataframe tbody tr th {\n",
1151
+ " vertical-align: top;\n",
1152
+ " }\n",
1153
+ "\n",
1154
+ " .dataframe thead th {\n",
1155
+ " text-align: right;\n",
1156
+ " }\n",
1157
+ "</style>\n",
1158
+ "<table border=\"1\" class=\"dataframe\">\n",
1159
+ " <thead>\n",
1160
+ " <tr style=\"text-align: right;\">\n",
1161
+ " <th></th>\n",
1162
+ " <th>Acceptance_criteria_embeddings</th>\n",
1163
+ " <th>Test_Steps_embeddings</th>\n",
1164
+ " <th>Expected_Result_embeddings</th>\n",
1165
+ " </tr>\n",
1166
+ " </thead>\n",
1167
+ " <tbody>\n",
1168
+ " <tr>\n",
1169
+ " <th>0</th>\n",
1170
+ " <td>[2.9078821e-05, 0.0009868374, 0.0006897929, 0....</td>\n",
1171
+ " <td>[-0.00090376585, 0.0015351841, 0.00077817513, ...</td>\n",
1172
+ " <td>[-0.00075740286, 0.0017703008, 7.018649e-05, 0...</td>\n",
1173
+ " </tr>\n",
1174
+ " <tr>\n",
1175
+ " <th>1</th>\n",
1176
+ " <td>[4.9687253e-05, -0.0002648631, -0.0011476703, ...</td>\n",
1177
+ " <td>[-0.0007915226, 0.0008593759, 0.00056966604, -...</td>\n",
1178
+ " <td>[0.00035405744, 0.0019673503, -0.00071650144, ...</td>\n",
1179
+ " </tr>\n",
1180
+ " <tr>\n",
1181
+ " <th>2</th>\n",
1182
+ " <td>[-0.0019043502, -0.0007733393, -0.00047627056,...</td>\n",
1183
+ " <td>[-0.0010107799, -0.0004325275, 0.0025766247, 0...</td>\n",
1184
+ " <td>[-0.0022062701, -0.0032818727, 0.0012025184, -...</td>\n",
1185
+ " </tr>\n",
1186
+ " <tr>\n",
1187
+ " <th>3</th>\n",
1188
+ " <td>[0.00079187436, 0.001024591, -0.00025014183, -...</td>\n",
1189
+ " <td>[-0.00082380656, 0.0015335361, 0.0008829938, 0...</td>\n",
1190
+ " <td>[-0.0007905865, 0.0017265088, 0.00018967084, 0...</td>\n",
1191
+ " </tr>\n",
1192
+ " <tr>\n",
1193
+ " <th>4</th>\n",
1194
+ " <td>[0.0006987122, 0.0025012388, 0.00094601634, -0...</td>\n",
1195
+ " <td>[-0.0006520124, 0.00076459144, 0.0014451812, 0...</td>\n",
1196
+ " <td>[-0.00028285536, 0.0013591949, -0.00073397934,...</td>\n",
1197
+ " </tr>\n",
1198
+ " </tbody>\n",
1199
+ "</table>\n",
1200
+ "</div>"
1201
+ ],
1202
+ "text/plain": [
1203
+ " Acceptance_criteria_embeddings \\\n",
1204
+ "0 [2.9078821e-05, 0.0009868374, 0.0006897929, 0.... \n",
1205
+ "1 [4.9687253e-05, -0.0002648631, -0.0011476703, ... \n",
1206
+ "2 [-0.0019043502, -0.0007733393, -0.00047627056,... \n",
1207
+ "3 [0.00079187436, 0.001024591, -0.00025014183, -... \n",
1208
+ "4 [0.0006987122, 0.0025012388, 0.00094601634, -0... \n",
1209
+ "\n",
1210
+ " Test_Steps_embeddings \\\n",
1211
+ "0 [-0.00090376585, 0.0015351841, 0.00077817513, ... \n",
1212
+ "1 [-0.0007915226, 0.0008593759, 0.00056966604, -... \n",
1213
+ "2 [-0.0010107799, -0.0004325275, 0.0025766247, 0... \n",
1214
+ "3 [-0.00082380656, 0.0015335361, 0.0008829938, 0... \n",
1215
+ "4 [-0.0006520124, 0.00076459144, 0.0014451812, 0... \n",
1216
+ "\n",
1217
+ " Expected_Result_embeddings \n",
1218
+ "0 [-0.00075740286, 0.0017703008, 7.018649e-05, 0... \n",
1219
+ "1 [0.00035405744, 0.0019673503, -0.00071650144, ... \n",
1220
+ "2 [-0.0022062701, -0.0032818727, 0.0012025184, -... \n",
1221
+ "3 [-0.0007905865, 0.0017265088, 0.00018967084, 0... \n",
1222
+ "4 [-0.00028285536, 0.0013591949, -0.00073397934,... "
1223
+ ]
1224
+ },
1225
+ "execution_count": 16,
1226
+ "metadata": {},
1227
+ "output_type": "execute_result"
1228
+ }
1229
+ ],
1230
+ "source": [
1231
+ "df = df.drop(['Test_case_Acceptance_criteria', 'Test_Steps', 'Expected_Result'], axis = 1)\n",
1232
+ "df.head(5)"
1233
+ ]
1234
+ },
1235
+ {
1236
+ "cell_type": "code",
1237
+ "execution_count": 17,
1238
+ "id": "53d82554",
1239
+ "metadata": {},
1240
+ "outputs": [],
1241
+ "source": [
1242
+ "X = np.array(df['Acceptance_criteria_embeddings'].tolist())\n",
1243
+ "y_test_steps = np.array(df['Test_Steps_embeddings'].tolist())\n",
1244
+ "y_expected_result = np.array(df['Expected_Result_embeddings'].tolist())\n",
1245
+ "\n",
1246
+ "# Reshape data for LSTM: (samples, timesteps, features)\n",
1247
+ "X = X.reshape((X.shape[0], 1, X.shape[1]))\n",
1248
+ "y_test_steps = y_test_steps.reshape((y_test_steps.shape[0], 1, y_test_steps.shape[1]))\n",
1249
+ "y_expected_result = y_expected_result.reshape((y_expected_result.shape[0], 1, y_expected_result.shape[1]))\n",
1250
+ "\n",
1251
+ "# Split the data into training and testing sets\n",
1252
+ "X_train, X_test, y_train_test_steps, y_test_test_steps = train_test_split(X, y_test_steps, test_size=0.2, random_state=42)\n",
1253
+ "_, _, y_train_expected_result, y_test_expected_result = train_test_split(X, y_expected_result, test_size=0.2, random_state=42)"
1254
+ ]
1255
+ },
1256
+ {
1257
+ "cell_type": "code",
1258
+ "execution_count": 18,
1259
+ "id": "dc4930ed",
1260
+ "metadata": {},
1261
+ "outputs": [
1262
+ {
1263
+ "name": "stderr",
1264
+ "output_type": "stream",
1265
+ "text": [
1266
+ "/Users/preethamreddygollapalli/anaconda3/lib/python3.11/site-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
1267
+ " super().__init__(**kwargs)\n"
1268
+ ]
1269
+ }
1270
+ ],
1271
+ "source": [
1272
+ "from tensorflow.keras.layers import LSTM, Dense, TimeDistributed\n",
1273
+ "\n",
1274
+ "# Define the model for Test Steps\n",
1275
+ "model_test_steps = Sequential([\n",
1276
+ " LSTM(50, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True),\n",
1277
+ " TimeDistributed(Dense(X_train.shape[2]))\n",
1278
+ "])\n",
1279
+ "\n",
1280
+ "model_test_steps.compile(optimizer='adam', loss='mse')\n",
1281
+ "\n",
1282
+ "# Define the model for Expected Result\n",
1283
+ "model_expected_result = Sequential([\n",
1284
+ " LSTM(50, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True),\n",
1285
+ " TimeDistributed(Dense(X_train.shape[2]))\n",
1286
+ "])\n",
1287
+ "\n",
1288
+ "model_expected_result.compile(optimizer='adam', loss='mse')"
1289
+ ]
1290
+ },
1291
+ {
1292
+ "cell_type": "code",
1293
+ "execution_count": 19,
1294
+ "id": "f7e70874",
1295
+ "metadata": {},
1296
+ "outputs": [
1297
+ {
1298
+ "name": "stdout",
1299
+ "output_type": "stream",
1300
+ "text": [
1301
+ "Epoch 1/10\n",
1302
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 533ms/step - loss: 2.2174e-06 - val_loss: 9.4766e-07\n",
1303
+ "Epoch 2/10\n",
1304
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 1.0551e-06 - val_loss: 6.0476e-07\n",
1305
+ "Epoch 3/10\n",
1306
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 8.6695e-07 - val_loss: 6.1300e-07\n",
1307
+ "Epoch 4/10\n",
1308
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 9.7589e-07 - val_loss: 6.2904e-07\n",
1309
+ "Epoch 5/10\n",
1310
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 1.0319e-06 - val_loss: 6.0141e-07\n",
1311
+ "Epoch 6/10\n",
1312
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 9.9991e-07 - val_loss: 5.6963e-07\n",
1313
+ "Epoch 7/10\n",
1314
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step - loss: 9.3908e-07 - val_loss: 5.5550e-07\n",
1315
+ "Epoch 8/10\n",
1316
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 8.8153e-07 - val_loss: 5.5216e-07\n",
1317
+ "Epoch 9/10\n",
1318
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 8.3433e-07 - val_loss: 5.5272e-07\n",
1319
+ "Epoch 10/10\n",
1320
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 8.0194e-07 - val_loss: 5.5084e-07\n",
1321
+ "Epoch 1/10\n",
1322
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 617ms/step - loss: 2.4237e-06 - val_loss: 1.0210e-06\n",
1323
+ "Epoch 2/10\n",
1324
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 1.4453e-06 - val_loss: 8.3659e-07\n",
1325
+ "Epoch 3/10\n",
1326
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 1.2441e-06 - val_loss: 9.3372e-07\n",
1327
+ "Epoch 4/10\n",
1328
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 1.3035e-06 - val_loss: 1.0286e-06\n",
1329
+ "Epoch 5/10\n",
1330
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 1.3807e-06 - val_loss: 1.0422e-06\n",
1331
+ "Epoch 6/10\n",
1332
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 1.3993e-06 - val_loss: 9.8222e-07\n",
1333
+ "Epoch 7/10\n",
1334
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 1.3536e-06 - val_loss: 8.9309e-07\n",
1335
+ "Epoch 8/10\n",
1336
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 1.2750e-06 - val_loss: 8.2297e-07\n",
1337
+ "Epoch 9/10\n",
1338
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 1.2075e-06 - val_loss: 7.9015e-07\n",
1339
+ "Epoch 10/10\n",
1340
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - loss: 1.1735e-06 - val_loss: 7.8403e-07\n"
1341
+ ]
1342
+ },
1343
+ {
1344
+ "data": {
1345
+ "text/plain": [
1346
+ "<keras.src.callbacks.history.History at 0x3215e4750>"
1347
+ ]
1348
+ },
1349
+ "execution_count": 19,
1350
+ "metadata": {},
1351
+ "output_type": "execute_result"
1352
+ }
1353
+ ],
1354
+ "source": [
1355
+ "# Train the model for Test Steps\n",
1356
+ "model_test_steps.fit(X_train, y_train_test_steps, epochs=10, batch_size=32, validation_split=0.2)\n",
1357
+ "\n",
1358
+ "# Train the model for Expected Result\n",
1359
+ "model_expected_result.fit(X_train, y_train_expected_result, epochs=10, batch_size=32, validation_split=0.2)"
1360
+ ]
1361
+ },
1362
+ {
1363
+ "cell_type": "code",
1364
+ "execution_count": 20,
1365
+ "id": "ba6fa0de",
1366
+ "metadata": {},
1367
+ "outputs": [
1368
+ {
1369
+ "name": "stdout",
1370
+ "output_type": "stream",
1371
+ "text": [
1372
+ "Mean Squared Error for Test Steps: 2.547742951719556e-06\n",
1373
+ "Mean Squared Error for Expected Result: 1.5647674445062876e-06\n"
1374
+ ]
1375
+ }
1376
+ ],
1377
+ "source": [
1378
+ "mse_test_steps = model_test_steps.evaluate(X_test, y_test_test_steps, verbose=0)\n",
1379
+ "print(f'Mean Squared Error for Test Steps: {mse_test_steps}')\n",
1380
+ "\n",
1381
+ "# Evaluate the model for Expected Result\n",
1382
+ "mse_expected_result = model_expected_result.evaluate(X_test, y_test_expected_result, verbose=0)\n",
1383
+ "print(f'Mean Squared Error for Expected Result: {mse_expected_result}')"
1384
+ ]
1385
+ },
1386
+ {
1387
+ "cell_type": "code",
1388
+ "execution_count": 21,
1389
+ "id": "b25dda8b",
1390
+ "metadata": {},
1391
+ "outputs": [
1392
+ {
1393
+ "name": "stdout",
1394
+ "output_type": "stream",
1395
+ "text": [
1396
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step\n",
1397
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step\n",
1398
+ "Predicted Test Steps Embeddings: [[[-8.4391527e-04 8.3808292e-04 9.2794985e-04 6.3661160e-04\n",
1399
+ " 1.4777145e-04 -4.8993941e-04 6.3069363e-04 2.0756002e-03\n",
1400
+ " -8.7469915e-04 -1.1720757e-03 -6.2859093e-04 -9.6428773e-04\n",
1401
+ " 1.0144784e-03 -6.3690939e-05 -3.8700749e-04 -7.1150030e-04\n",
1402
+ " 5.5333151e-04 9.2034061e-05 -1.0463977e-03 -5.2145477e-03\n",
1403
+ " 8.5559912e-04 -5.3791492e-04 2.6520165e-03 -8.6638553e-04\n",
1404
+ " -7.5741264e-04 5.9628719e-04 -6.6239189e-04 -8.7471894e-04\n",
1405
+ " -9.9208625e-04 8.2071731e-04 4.4646338e-04 8.4726338e-04\n",
1406
+ " 9.5180282e-04 -8.4265345e-04 -5.4202758e-04 1.6481500e-03\n",
1407
+ " -2.2101693e-04 -9.7025535e-04 -6.7334180e-04 -2.8382645e-03\n",
1408
+ " 6.2619505e-04 -1.0893656e-03 -8.7078079e-04 -2.0926578e-04\n",
1409
+ " 8.1423775e-04 8.4379961e-04 -1.6668448e-04 -9.9032815e-04\n",
1410
+ " 9.5974747e-04 8.5376378e-05 6.4395380e-04 -2.3663426e-03\n",
1411
+ " -7.3024776e-04 4.5859173e-04 -1.1602787e-03 5.6848535e-04\n",
1412
+ " 2.6010780e-04 -1.0128880e-03 -2.1443174e-03 -2.6855108e-04\n",
1413
+ " -4.5336629e-04 6.6400541e-04 8.6696784e-04 -8.9265942e-04\n",
1414
+ " -2.0976812e-03 8.8741013e-04 1.0340458e-03 9.4049744e-04\n",
1415
+ " -2.5883170e-03 1.6136141e-03 -9.2293258e-04 8.5503218e-04\n",
1416
+ " 1.2474646e-03 -1.5019166e-05 9.6433581e-04 2.4179585e-04\n",
1417
+ " 7.6161108e-05 6.6559250e-04 -2.3543791e-04 1.0006825e-03\n",
1418
+ " 2.9814860e-04 -7.5365568e-04 -2.1536734e-03 8.8814070e-04\n",
1419
+ " -1.2573856e-03 -1.0502129e-03 5.2467862e-04 -6.8704574e-04\n",
1420
+ " 7.3569722e-04 -4.7312939e-04 2.2936910e-03 8.2683226e-04\n",
1421
+ " 9.9437268e-05 -1.2628101e-04 3.2667362e-03 9.2687435e-04\n",
1422
+ " 8.7968190e-04 -8.3866203e-04 -8.7905704e-05 -1.0417018e-03]]]\n",
1423
+ "Predicted Expected Result Embeddings: [[[-6.00951666e-04 -8.71340380e-05 2.10425234e-04 1.77528680e-04\n",
1424
+ " 8.00210983e-05 -1.85253297e-03 4.65850317e-04 3.56995873e-03\n",
1425
+ " -8.36861320e-04 -6.41276536e-04 9.27919289e-04 -5.45815798e-04\n",
1426
+ " -3.05406691e-04 7.55917281e-04 1.03734914e-04 2.38866487e-05\n",
1427
+ " 7.79760536e-04 -8.88810202e-04 -8.77981714e-04 -2.83502182e-03\n",
1428
+ " 4.05026833e-04 6.70524372e-04 4.63965582e-04 -7.13920599e-05\n",
1429
+ " -1.02403646e-04 -8.36344901e-04 -6.75997231e-04 7.48908031e-04\n",
1430
+ " -1.09156314e-03 7.66666722e-04 1.19300978e-03 -7.83136347e-04\n",
1431
+ " 8.18963978e-04 -1.27818645e-03 -1.85861718e-03 2.35299161e-03\n",
1432
+ " 9.13300086e-04 -3.06413101e-04 -1.55945239e-03 -9.19050653e-04\n",
1433
+ " -5.39628905e-04 -6.51296170e-04 -1.40835065e-04 -4.40066768e-04\n",
1434
+ " 1.64291263e-03 -9.18515027e-04 -3.14408244e-04 2.30843452e-05\n",
1435
+ " 6.91586174e-04 6.74205832e-04 -6.55808544e-05 -4.83483251e-04\n",
1436
+ " -1.72121217e-04 -6.61872444e-04 -8.81674583e-04 -8.80461157e-05\n",
1437
+ " -5.44943148e-04 1.00790197e-03 -1.34598825e-03 1.66665553e-03\n",
1438
+ " 3.33746721e-04 8.65762937e-04 8.99292936e-04 -9.54890158e-04\n",
1439
+ " -5.94305107e-04 9.11348965e-04 2.88407644e-03 7.95712927e-04\n",
1440
+ " -1.11689197e-03 2.58971867e-03 -6.90977846e-04 2.21353053e-04\n",
1441
+ " 7.32570188e-05 -5.61508466e-04 8.17475026e-04 9.93824913e-04\n",
1442
+ " 8.48811760e-04 5.58658561e-04 -8.79892672e-04 -1.04590645e-03\n",
1443
+ " -6.82677957e-04 8.21857655e-04 -8.91812611e-04 1.62078207e-03\n",
1444
+ " -1.80392992e-03 2.16952423e-04 3.11806944e-04 5.39015047e-04\n",
1445
+ " -9.99061740e-08 9.94091504e-04 3.61588714e-03 2.67144089e-04\n",
1446
+ " -1.72064669e-04 -8.35217419e-04 1.40309369e-03 -4.59492789e-04\n",
1447
+ " 9.69752960e-04 -8.42938258e-04 -3.16075137e-04 1.21560282e-04]]]\n"
1448
+ ]
1449
+ }
1450
+ ],
1451
+ "source": [
1452
+ "new_acceptance_criteria = df['Acceptance_criteria_embeddings'].tolist()[0]\n",
1453
+ "new_acceptance_criteria = np.array(new_acceptance_criteria).reshape((1, 1, len(new_acceptance_criteria)))\n",
1454
+ "\n",
1455
+ "# Make predictions\n",
1456
+ "predicted_test_steps = model_test_steps.predict(new_acceptance_criteria)\n",
1457
+ "predicted_expected_result = model_expected_result.predict(new_acceptance_criteria)\n",
1458
+ "\n",
1459
+ "print(f'Predicted Test Steps Embeddings: {predicted_test_steps}')\n",
1460
+ "print(f'Predicted Expected Result Embeddings: {predicted_expected_result}')"
1461
+ ]
1462
+ },
1463
+ {
1464
+ "cell_type": "code",
1465
+ "execution_count": 24,
1466
+ "id": "cf073637",
1467
+ "metadata": {},
1468
+ "outputs": [],
1469
+ "source": [
1470
+ "mae_test_steps = MeanAbsoluteError()\n",
1471
+ "mae_expected_result = MeanAbsoluteError()"
1472
+ ]
1473
+ },
1474
+ {
1475
+ "cell_type": "code",
1476
+ "execution_count": 25,
1477
+ "id": "d77deaa0",
1478
+ "metadata": {},
1479
+ "outputs": [
1480
+ {
1481
+ "name": "stdout",
1482
+ "output_type": "stream",
1483
+ "text": [
1484
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
1485
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
1486
+ "Mean Absolute Error for Test Steps: 0.0012983311899006367\n",
1487
+ "Mean Absolute Error for Expected Result: 0.0009957090951502323\n",
1488
+ "R-squared for Test Steps: 0.13273363428637874\n",
1489
+ "R-squared for Expected Result: 0.1580453613077316\n"
1490
+ ]
1491
+ }
1492
+ ],
1493
+ "source": [
1494
+ "y_pred_test_steps = model_test_steps.predict(X_test)\n",
1495
+ "y_pred_expected_result = model_expected_result.predict(X_test)\n",
1496
+ "\n",
1497
+ "# Calculate MAE for Test Steps\n",
1498
+ "mae_test_steps_value = mae_test_steps(y_test_test_steps, y_pred_test_steps).numpy()\n",
1499
+ "print(f'Mean Absolute Error for Test Steps: {mae_test_steps_value}')\n",
1500
+ "\n",
1501
+ "# Calculate MAE for Expected Result\n",
1502
+ "mae_expected_result_value = mae_expected_result(y_test_expected_result, y_pred_expected_result).numpy()\n",
1503
+ "print(f'Mean Absolute Error for Expected Result: {mae_expected_result_value}')\n",
1504
+ "\n",
1505
+ "# Calculate R-squared for Test Steps\n",
1506
+ "r2_test_steps = r2_score(y_test_test_steps.flatten(), y_pred_test_steps.flatten())\n",
1507
+ "print(f'R-squared for Test Steps: {r2_test_steps}')\n",
1508
+ "\n",
1509
+ "# Calculate R-squared for Expected Result\n",
1510
+ "r2_expected_result = r2_score(y_test_expected_result.flatten(), y_pred_expected_result.flatten())\n",
1511
+ "print(f'R-squared for Expected Result: {r2_expected_result}')"
1512
+ ]
1513
+ },
1514
+ {
1515
+ "cell_type": "code",
1516
+ "execution_count": null,
1517
+ "id": "ea62b59f",
1518
+ "metadata": {},
1519
+ "outputs": [],
1520
+ "source": []
1521
+ }
1522
+ ],
1523
+ "metadata": {
1524
+ "kernelspec": {
1525
+ "display_name": "Python 3 (ipykernel)",
1526
+ "language": "python",
1527
+ "name": "python3"
1528
+ },
1529
+ "language_info": {
1530
+ "codemirror_mode": {
1531
+ "name": "ipython",
1532
+ "version": 3
1533
+ },
1534
+ "file_extension": ".py",
1535
+ "mimetype": "text/x-python",
1536
+ "name": "python",
1537
+ "nbconvert_exporter": "python",
1538
+ "pygments_lexer": "ipython3",
1539
+ "version": "3.11.5"
1540
+ }
1541
+ },
1542
+ "nbformat": 4,
1543
+ "nbformat_minor": 5
1544
+ }
model_expected_result.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee100706f6b0dbe1210944b92e6ec17edbee4d8876c006ea730bbf4e5d627435
3
+ size 452632
model_test_steps.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b00a6397c7000ff46f63afeb41675a64fe1c319abae9459cace8deea528d8f7
3
+ size 453080
word2vec_model (1).bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09880657bc9da02e6aa6d8d2adfd483516a1f2e3e677c8e5bb6dc0d5e80f6f14
3
+ size 272565