Safetensors
long_vita
custom_code
Long-VITA-128K_HF / modeling_long_vita.py
shenyunhang's picture
.
0afdfbd
raw
history blame
13.5 kB
# coding=utf-8
from typing import Callable, List, Optional, Tuple, Union
import torch
from torch import nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
from transformers.modeling_utils import PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import (
LossKwargs,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_long_vita import LongVITAConfig
logger = logging.get_logger(__name__)
from transformers import Qwen2Model, Qwen2ForCausalLM
# from .visual import VisionTransformer
from .modeling_intern_vit import InternVisionModel
from .resampler_projector import ResamplerProjector
from .configuration_intern_vit import InternVisionConfig
try:
from .flash_attention import FlashAttention
has_flash_attn = True
except:
print('FlashAttention is not installed.')
has_flash_attn = False
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LongVITAConfig"
class LongVITAModel(Qwen2Model):
config_class = LongVITAConfig
_no_split_modules = ["Qwen2DecoderLayer", "VisionTransformer"]
# _no_split_modules = ["Qwen2DecoderLayer", "VisualAttentionBlock"]
def __init__(self, config: LongVITAConfig):
super().__init__(config)
# self.visual = VisionTransformer(**config.visual)
visual_config = InternVisionConfig(**config.visual)
self.vision_model = InternVisionModel(visual_config)
self.vision_projection = ResamplerProjector(config, visual_config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
images: Optional[torch.FloatTensor] = None,
image_indices: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
if (past_key_values is None or len(past_key_values) == 0) and images is not None:
image_embeds = self.vision_model(images).last_hidden_state
# if torch.distributed.get_rank() == 0:
# print(f"image_embeds {image_embeds.size()}")
assert image_embeds.shape[0] == len(images)
fake_images = None
image_embeds = image_embeds[:, 1:, :]
image_embeds = self.vision_projection(image_embeds)
# torch.set_printoptions(threshold=100_000)
# if torch.distributed.get_rank() == 0:
# if True:
# print(f"image_embeds {image_embeds.size()}")
# print(f"images {images.size()}")
# print(f"input_ids {input_ids.size()}")
# # print(f"input_ids {input_ids}")
# print(f"image_indices {image_indices.size()}")
# # print(f"image_indices {image_indices}")
elif self.training:
device = self.get_input_embeddings().weight.data.device
dtype = self.get_input_embeddings().weight.data.dtype
fake_images = torch.ones((1, 3, self.config.visual["image_size"], self.config.visual["image_size"]), dtype=dtype, device=device)
image_embeds = self.vision_model(fake_images).last_hidden_state
image_embeds = image_embeds[:, 1:, :]
image_embeds = self.vision_projection(image_embeds)
else:
fake_images = None
image_embeds = None
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if fake_images is not None:
inputs_embeds = inputs_embeds + image_embeds.mean() * 0.0
elif image_embeds is not None:
inputs_embeds = inputs_embeds.clone()
image_embeds = image_embeds.to(inputs_embeds.device)
image_indices = image_indices.to(inputs_embeds.device)
indices_b, indices_s = image_indices.unbind(dim=0)
inputs_embeds[indices_b.view(-1), indices_s.view(-1)] = image_embeds.view(-1, image_embeds.shape[-1])
# inputs_embeds = inputs_embeds + image_embeds.mean() * 0.0
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class LongVITAForCausalLM(Qwen2ForCausalLM):
config_class = LongVITAConfig
def __init__(self, config):
super().__init__(config)
self.model = LongVITAModel(config)
# Initialize weights and apply final processing
self.post_init()
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
images: Optional[torch.FloatTensor] = None,
image_indices: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
>>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
images=images,
image_indices=image_indices,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)