Safetensors
long_vita
custom_code
shenyunhang commited on
Commit
0afdfbd
·
1 Parent(s): 2f2e393
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151679,
3
+ "</img>": 151666,
4
+ "</patch>": 151672,
5
+ "</quad>": 151675,
6
+ "</ref>": 151677,
7
+ "</tool_call>": 151658,
8
+ "</vid>": 151669,
9
+ "<IMG_CONTEXT>": 151667,
10
+ "<PATCH_CONTEXT>": 151673,
11
+ "<VID_CONTEXT>": 151670,
12
+ "<box>": 151678,
13
+ "<image>": 151680,
14
+ "<img>": 151665,
15
+ "<patch>": 151671,
16
+ "<quad>": 151674,
17
+ "<ref>": 151676,
18
+ "<tool_call>": 151657,
19
+ "<vid>": 151668,
20
+ "<video>": 151681,
21
+ "<|box_end|>": 151649,
22
+ "<|box_start|>": 151648,
23
+ "<|endoftext|>": 151643,
24
+ "<|file_sep|>": 151664,
25
+ "<|fim_middle|>": 151660,
26
+ "<|fim_pad|>": 151662,
27
+ "<|fim_prefix|>": 151659,
28
+ "<|fim_suffix|>": 151661,
29
+ "<|im_end|>": 151645,
30
+ "<|im_start|>": 151644,
31
+ "<|image_pad|>": 151655,
32
+ "<|object_ref_end|>": 151647,
33
+ "<|object_ref_start|>": 151646,
34
+ "<|quad_end|>": 151651,
35
+ "<|quad_start|>": 151650,
36
+ "<|repo_name|>": 151663,
37
+ "<|video_pad|>": 151656,
38
+ "<|vision_end|>": 151653,
39
+ "<|vision_pad|>": 151654,
40
+ "<|vision_start|>": 151652
41
+ }
config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data//models/Qwen/Qwen2.5-14B-Instruct/",
3
+ "architectures": [
4
+ "LongVITAForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_long_vita.LongVITAConfig",
9
+ "AutoModelForCausalLM": "modeling_long_vita.LongVITAForCausalLM"
10
+ },
11
+ "bos_token_id": 151643,
12
+ "eos_token_id": 151645,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 5120,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 13824,
17
+ "max_position_embeddings": 1310720,
18
+ "max_window_layers": 70,
19
+ "model_type": "long_vita",
20
+ "num_attention_heads": 40,
21
+ "num_hidden_layers": 48,
22
+ "num_key_value_heads": 8,
23
+ "rms_norm_eps": 1e-06,
24
+ "rope_scaling": null,
25
+ "rope_theta": 1000000.0,
26
+ "sliding_window": null,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.48.3",
30
+ "use_cache": true,
31
+ "use_sliding_window": false,
32
+ "visual": {
33
+ "architectures": [
34
+ "InternVisionModel"
35
+ ],
36
+ "attention_dropout": 0.0,
37
+ "auto_map": {
38
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
39
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
40
+ },
41
+ "drop_path_rate": 0.0,
42
+ "dropout": 0.0,
43
+ "hidden_act": "gelu",
44
+ "hidden_size": 1024,
45
+ "image_size": 448,
46
+ "initializer_factor": 1.0,
47
+ "initializer_range": 0.02,
48
+ "intermediate_size": 4096,
49
+ "layer_norm_eps": 1e-06,
50
+ "model_type": "intern_vit_6b",
51
+ "norm_type": "layer_norm",
52
+ "num_attention_heads": 16,
53
+ "num_channels": 3,
54
+ "num_hidden_layers": 24,
55
+ "patch_size": 14,
56
+ "qk_normalization": false,
57
+ "qkv_bias": true,
58
+ "torch_dtype": "bfloat16",
59
+ "transformers_version": "4.37.2",
60
+ "use_flash_attn": true
61
+ },
62
+ "vocab_size": 152064
63
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_long_vita.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+ from transformers import Qwen2Config
4
+
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+
9
+
10
+ class LongVITAConfig(Qwen2Config):
11
+ model_type = "long_vita"
12
+
13
+ def __init__(
14
+ self,
15
+ **kwargs,
16
+ ):
17
+
18
+ super().__init__(
19
+ **kwargs,
20
+ )
flash_attention.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/Dao-AILab/flash-attention/blob/v0.2.8/flash_attn/flash_attention.py
2
+ import torch
3
+ import torch.nn as nn
4
+ from einops import rearrange
5
+
6
+ try: # v1
7
+ from flash_attn.flash_attn_interface import \
8
+ flash_attn_unpadded_qkvpacked_func
9
+ except: # v2
10
+ from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
11
+
12
+ from flash_attn.bert_padding import pad_input, unpad_input
13
+
14
+
15
+ class FlashAttention(nn.Module):
16
+ """Implement the scaled dot product attention with softmax.
17
+ Arguments
18
+ ---------
19
+ softmax_scale: The temperature to use for the softmax attention.
20
+ (default: 1/sqrt(d_keys) where d_keys is computed at
21
+ runtime)
22
+ attention_dropout: The dropout rate to apply to the attention
23
+ (default: 0.0)
24
+ """
25
+
26
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
27
+ super().__init__()
28
+ self.softmax_scale = softmax_scale
29
+ self.dropout_p = attention_dropout
30
+
31
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
32
+ max_s=None, need_weights=False):
33
+ """Implements the multihead softmax attention.
34
+ Arguments
35
+ ---------
36
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
37
+ if unpadded: (nnz, 3, h, d)
38
+ key_padding_mask: a bool tensor of shape (B, S)
39
+ """
40
+ assert not need_weights
41
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
42
+ assert qkv.is_cuda
43
+
44
+ if cu_seqlens is None:
45
+ batch_size = qkv.shape[0]
46
+ seqlen = qkv.shape[1]
47
+ if key_padding_mask is None:
48
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
49
+ max_s = seqlen
50
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
51
+ device=qkv.device)
52
+ output = flash_attn_unpadded_qkvpacked_func(
53
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
54
+ softmax_scale=self.softmax_scale, causal=causal
55
+ )
56
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
57
+ else:
58
+ nheads = qkv.shape[-2]
59
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
60
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
61
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
62
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
63
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
64
+ softmax_scale=self.softmax_scale, causal=causal
65
+ )
66
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
67
+ indices, batch_size, seqlen),
68
+ 'b s (h d) -> b s h d', h=nheads)
69
+ else:
70
+ assert max_s is not None
71
+ output = flash_attn_unpadded_qkvpacked_func(
72
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
73
+ softmax_scale=self.softmax_scale, causal=causal
74
+ )
75
+
76
+ return output, None
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.3"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ce04763ec51698094488cc8d7a4de5751adbb6827da9d33696a452df7cef77a
3
+ size 4986211280
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386c4097e54046b0b54397a2b4884b1968d163a3d142c55d895e8bbcf70990b6
3
+ size 4954847344
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:657f91d0c27dc3a4b3c280207cd1469a5a924854a6668242f9686b2f77e8ed6b
3
+ size 4954847392
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65fd3fd7384de2d7a85eb33ed283ec8424423b979bfd560b7111e15fe0b1dc9c
3
+ size 4954847392
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d035cc59fe64c6c010ece7bb102a356c7bbcb21cae93f4e1ed11582c10ebab9b
3
+ size 4954847392
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcc0dacf2f28c09e4085488cec2b68446f13d75dd8731373ba8f85c2a7c42c35
3
+ size 3804355448
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bfb9f4f24f2991ae5e78de8454c9f40b51959a1167098aae481ff2b7a75476e
3
+ size 1557135488
model.safetensors.index.json ADDED
@@ -0,0 +1,930 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 30166982656
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00007-of-00007.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00007.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00007.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00007.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00007.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00007.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00007.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00007.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00007.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00007.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00007.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00007.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00007.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00007.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00007.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00007.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00007.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00007.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00007.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00007.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00007.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00007.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00007.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00007.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00007.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00007.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00007.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00007.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00007.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00007.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00007.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00007.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00007.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00007.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00005-of-00007.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00005-of-00007.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00006-of-00007.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00006-of-00007.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00006-of-00007.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00006-of-00007.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00006-of-00007.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00006-of-00007.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
524
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00007.safetensors",
525
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
526
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
527
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
528
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
529
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
530
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
531
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
532
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
533
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
534
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
535
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
536
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
537
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
538
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
539
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
540
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
541
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
542
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
543
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
544
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
545
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
546
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
547
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
548
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
549
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
550
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
551
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
552
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
553
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
554
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
555
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
556
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
557
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
558
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
559
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
560
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00007.safetensors",
561
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
562
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
563
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
564
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
565
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
566
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
567
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
568
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
569
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
570
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
571
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
572
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00007.safetensors",
573
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
574
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
575
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
576
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
577
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
578
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
579
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
580
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
581
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
582
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
583
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
584
+ "model.norm.weight": "model-00006-of-00007.safetensors",
585
+ "model.vision_model.embeddings.class_embedding": "model-00006-of-00007.safetensors",
586
+ "model.vision_model.embeddings.patch_embedding.bias": "model-00006-of-00007.safetensors",
587
+ "model.vision_model.embeddings.patch_embedding.weight": "model-00006-of-00007.safetensors",
588
+ "model.vision_model.embeddings.position_embedding": "model-00006-of-00007.safetensors",
589
+ "model.vision_model.encoder.layers.0.attn.proj.bias": "model-00006-of-00007.safetensors",
590
+ "model.vision_model.encoder.layers.0.attn.proj.weight": "model-00006-of-00007.safetensors",
591
+ "model.vision_model.encoder.layers.0.attn.qkv.bias": "model-00006-of-00007.safetensors",
592
+ "model.vision_model.encoder.layers.0.attn.qkv.weight": "model-00006-of-00007.safetensors",
593
+ "model.vision_model.encoder.layers.0.ls1": "model-00006-of-00007.safetensors",
594
+ "model.vision_model.encoder.layers.0.ls2": "model-00006-of-00007.safetensors",
595
+ "model.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00006-of-00007.safetensors",
596
+ "model.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00006-of-00007.safetensors",
597
+ "model.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00006-of-00007.safetensors",
598
+ "model.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00006-of-00007.safetensors",
599
+ "model.vision_model.encoder.layers.0.norm1.bias": "model-00006-of-00007.safetensors",
600
+ "model.vision_model.encoder.layers.0.norm1.weight": "model-00006-of-00007.safetensors",
601
+ "model.vision_model.encoder.layers.0.norm2.bias": "model-00006-of-00007.safetensors",
602
+ "model.vision_model.encoder.layers.0.norm2.weight": "model-00006-of-00007.safetensors",
603
+ "model.vision_model.encoder.layers.1.attn.proj.bias": "model-00006-of-00007.safetensors",
604
+ "model.vision_model.encoder.layers.1.attn.proj.weight": "model-00006-of-00007.safetensors",
605
+ "model.vision_model.encoder.layers.1.attn.qkv.bias": "model-00006-of-00007.safetensors",
606
+ "model.vision_model.encoder.layers.1.attn.qkv.weight": "model-00006-of-00007.safetensors",
607
+ "model.vision_model.encoder.layers.1.ls1": "model-00006-of-00007.safetensors",
608
+ "model.vision_model.encoder.layers.1.ls2": "model-00006-of-00007.safetensors",
609
+ "model.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00006-of-00007.safetensors",
610
+ "model.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00006-of-00007.safetensors",
611
+ "model.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00006-of-00007.safetensors",
612
+ "model.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00006-of-00007.safetensors",
613
+ "model.vision_model.encoder.layers.1.norm1.bias": "model-00006-of-00007.safetensors",
614
+ "model.vision_model.encoder.layers.1.norm1.weight": "model-00006-of-00007.safetensors",
615
+ "model.vision_model.encoder.layers.1.norm2.bias": "model-00006-of-00007.safetensors",
616
+ "model.vision_model.encoder.layers.1.norm2.weight": "model-00006-of-00007.safetensors",
617
+ "model.vision_model.encoder.layers.10.attn.proj.bias": "model-00006-of-00007.safetensors",
618
+ "model.vision_model.encoder.layers.10.attn.proj.weight": "model-00006-of-00007.safetensors",
619
+ "model.vision_model.encoder.layers.10.attn.qkv.bias": "model-00006-of-00007.safetensors",
620
+ "model.vision_model.encoder.layers.10.attn.qkv.weight": "model-00006-of-00007.safetensors",
621
+ "model.vision_model.encoder.layers.10.ls1": "model-00006-of-00007.safetensors",
622
+ "model.vision_model.encoder.layers.10.ls2": "model-00006-of-00007.safetensors",
623
+ "model.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00006-of-00007.safetensors",
624
+ "model.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00006-of-00007.safetensors",
625
+ "model.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00006-of-00007.safetensors",
626
+ "model.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00006-of-00007.safetensors",
627
+ "model.vision_model.encoder.layers.10.norm1.bias": "model-00006-of-00007.safetensors",
628
+ "model.vision_model.encoder.layers.10.norm1.weight": "model-00006-of-00007.safetensors",
629
+ "model.vision_model.encoder.layers.10.norm2.bias": "model-00006-of-00007.safetensors",
630
+ "model.vision_model.encoder.layers.10.norm2.weight": "model-00006-of-00007.safetensors",
631
+ "model.vision_model.encoder.layers.11.attn.proj.bias": "model-00006-of-00007.safetensors",
632
+ "model.vision_model.encoder.layers.11.attn.proj.weight": "model-00006-of-00007.safetensors",
633
+ "model.vision_model.encoder.layers.11.attn.qkv.bias": "model-00006-of-00007.safetensors",
634
+ "model.vision_model.encoder.layers.11.attn.qkv.weight": "model-00006-of-00007.safetensors",
635
+ "model.vision_model.encoder.layers.11.ls1": "model-00006-of-00007.safetensors",
636
+ "model.vision_model.encoder.layers.11.ls2": "model-00006-of-00007.safetensors",
637
+ "model.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00006-of-00007.safetensors",
638
+ "model.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00006-of-00007.safetensors",
639
+ "model.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00006-of-00007.safetensors",
640
+ "model.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00006-of-00007.safetensors",
641
+ "model.vision_model.encoder.layers.11.norm1.bias": "model-00006-of-00007.safetensors",
642
+ "model.vision_model.encoder.layers.11.norm1.weight": "model-00006-of-00007.safetensors",
643
+ "model.vision_model.encoder.layers.11.norm2.bias": "model-00006-of-00007.safetensors",
644
+ "model.vision_model.encoder.layers.11.norm2.weight": "model-00006-of-00007.safetensors",
645
+ "model.vision_model.encoder.layers.12.attn.proj.bias": "model-00006-of-00007.safetensors",
646
+ "model.vision_model.encoder.layers.12.attn.proj.weight": "model-00006-of-00007.safetensors",
647
+ "model.vision_model.encoder.layers.12.attn.qkv.bias": "model-00006-of-00007.safetensors",
648
+ "model.vision_model.encoder.layers.12.attn.qkv.weight": "model-00006-of-00007.safetensors",
649
+ "model.vision_model.encoder.layers.12.ls1": "model-00006-of-00007.safetensors",
650
+ "model.vision_model.encoder.layers.12.ls2": "model-00006-of-00007.safetensors",
651
+ "model.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00006-of-00007.safetensors",
652
+ "model.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00006-of-00007.safetensors",
653
+ "model.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00006-of-00007.safetensors",
654
+ "model.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00006-of-00007.safetensors",
655
+ "model.vision_model.encoder.layers.12.norm1.bias": "model-00006-of-00007.safetensors",
656
+ "model.vision_model.encoder.layers.12.norm1.weight": "model-00006-of-00007.safetensors",
657
+ "model.vision_model.encoder.layers.12.norm2.bias": "model-00006-of-00007.safetensors",
658
+ "model.vision_model.encoder.layers.12.norm2.weight": "model-00006-of-00007.safetensors",
659
+ "model.vision_model.encoder.layers.13.attn.proj.bias": "model-00006-of-00007.safetensors",
660
+ "model.vision_model.encoder.layers.13.attn.proj.weight": "model-00006-of-00007.safetensors",
661
+ "model.vision_model.encoder.layers.13.attn.qkv.bias": "model-00006-of-00007.safetensors",
662
+ "model.vision_model.encoder.layers.13.attn.qkv.weight": "model-00006-of-00007.safetensors",
663
+ "model.vision_model.encoder.layers.13.ls1": "model-00006-of-00007.safetensors",
664
+ "model.vision_model.encoder.layers.13.ls2": "model-00006-of-00007.safetensors",
665
+ "model.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00006-of-00007.safetensors",
666
+ "model.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00006-of-00007.safetensors",
667
+ "model.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00006-of-00007.safetensors",
668
+ "model.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00006-of-00007.safetensors",
669
+ "model.vision_model.encoder.layers.13.norm1.bias": "model-00006-of-00007.safetensors",
670
+ "model.vision_model.encoder.layers.13.norm1.weight": "model-00006-of-00007.safetensors",
671
+ "model.vision_model.encoder.layers.13.norm2.bias": "model-00006-of-00007.safetensors",
672
+ "model.vision_model.encoder.layers.13.norm2.weight": "model-00006-of-00007.safetensors",
673
+ "model.vision_model.encoder.layers.14.attn.proj.bias": "model-00006-of-00007.safetensors",
674
+ "model.vision_model.encoder.layers.14.attn.proj.weight": "model-00006-of-00007.safetensors",
675
+ "model.vision_model.encoder.layers.14.attn.qkv.bias": "model-00006-of-00007.safetensors",
676
+ "model.vision_model.encoder.layers.14.attn.qkv.weight": "model-00006-of-00007.safetensors",
677
+ "model.vision_model.encoder.layers.14.ls1": "model-00006-of-00007.safetensors",
678
+ "model.vision_model.encoder.layers.14.ls2": "model-00006-of-00007.safetensors",
679
+ "model.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00006-of-00007.safetensors",
680
+ "model.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00006-of-00007.safetensors",
681
+ "model.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00006-of-00007.safetensors",
682
+ "model.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00006-of-00007.safetensors",
683
+ "model.vision_model.encoder.layers.14.norm1.bias": "model-00006-of-00007.safetensors",
684
+ "model.vision_model.encoder.layers.14.norm1.weight": "model-00006-of-00007.safetensors",
685
+ "model.vision_model.encoder.layers.14.norm2.bias": "model-00006-of-00007.safetensors",
686
+ "model.vision_model.encoder.layers.14.norm2.weight": "model-00006-of-00007.safetensors",
687
+ "model.vision_model.encoder.layers.15.attn.proj.bias": "model-00006-of-00007.safetensors",
688
+ "model.vision_model.encoder.layers.15.attn.proj.weight": "model-00006-of-00007.safetensors",
689
+ "model.vision_model.encoder.layers.15.attn.qkv.bias": "model-00006-of-00007.safetensors",
690
+ "model.vision_model.encoder.layers.15.attn.qkv.weight": "model-00006-of-00007.safetensors",
691
+ "model.vision_model.encoder.layers.15.ls1": "model-00006-of-00007.safetensors",
692
+ "model.vision_model.encoder.layers.15.ls2": "model-00006-of-00007.safetensors",
693
+ "model.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00006-of-00007.safetensors",
694
+ "model.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00006-of-00007.safetensors",
695
+ "model.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00006-of-00007.safetensors",
696
+ "model.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00006-of-00007.safetensors",
697
+ "model.vision_model.encoder.layers.15.norm1.bias": "model-00006-of-00007.safetensors",
698
+ "model.vision_model.encoder.layers.15.norm1.weight": "model-00006-of-00007.safetensors",
699
+ "model.vision_model.encoder.layers.15.norm2.bias": "model-00006-of-00007.safetensors",
700
+ "model.vision_model.encoder.layers.15.norm2.weight": "model-00006-of-00007.safetensors",
701
+ "model.vision_model.encoder.layers.16.attn.proj.bias": "model-00006-of-00007.safetensors",
702
+ "model.vision_model.encoder.layers.16.attn.proj.weight": "model-00006-of-00007.safetensors",
703
+ "model.vision_model.encoder.layers.16.attn.qkv.bias": "model-00006-of-00007.safetensors",
704
+ "model.vision_model.encoder.layers.16.attn.qkv.weight": "model-00006-of-00007.safetensors",
705
+ "model.vision_model.encoder.layers.16.ls1": "model-00006-of-00007.safetensors",
706
+ "model.vision_model.encoder.layers.16.ls2": "model-00006-of-00007.safetensors",
707
+ "model.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00006-of-00007.safetensors",
708
+ "model.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00006-of-00007.safetensors",
709
+ "model.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00006-of-00007.safetensors",
710
+ "model.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00006-of-00007.safetensors",
711
+ "model.vision_model.encoder.layers.16.norm1.bias": "model-00006-of-00007.safetensors",
712
+ "model.vision_model.encoder.layers.16.norm1.weight": "model-00006-of-00007.safetensors",
713
+ "model.vision_model.encoder.layers.16.norm2.bias": "model-00006-of-00007.safetensors",
714
+ "model.vision_model.encoder.layers.16.norm2.weight": "model-00006-of-00007.safetensors",
715
+ "model.vision_model.encoder.layers.17.attn.proj.bias": "model-00006-of-00007.safetensors",
716
+ "model.vision_model.encoder.layers.17.attn.proj.weight": "model-00006-of-00007.safetensors",
717
+ "model.vision_model.encoder.layers.17.attn.qkv.bias": "model-00006-of-00007.safetensors",
718
+ "model.vision_model.encoder.layers.17.attn.qkv.weight": "model-00006-of-00007.safetensors",
719
+ "model.vision_model.encoder.layers.17.ls1": "model-00006-of-00007.safetensors",
720
+ "model.vision_model.encoder.layers.17.ls2": "model-00006-of-00007.safetensors",
721
+ "model.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00006-of-00007.safetensors",
722
+ "model.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00006-of-00007.safetensors",
723
+ "model.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00006-of-00007.safetensors",
724
+ "model.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00006-of-00007.safetensors",
725
+ "model.vision_model.encoder.layers.17.norm1.bias": "model-00006-of-00007.safetensors",
726
+ "model.vision_model.encoder.layers.17.norm1.weight": "model-00006-of-00007.safetensors",
727
+ "model.vision_model.encoder.layers.17.norm2.bias": "model-00006-of-00007.safetensors",
728
+ "model.vision_model.encoder.layers.17.norm2.weight": "model-00006-of-00007.safetensors",
729
+ "model.vision_model.encoder.layers.18.attn.proj.bias": "model-00006-of-00007.safetensors",
730
+ "model.vision_model.encoder.layers.18.attn.proj.weight": "model-00006-of-00007.safetensors",
731
+ "model.vision_model.encoder.layers.18.attn.qkv.bias": "model-00006-of-00007.safetensors",
732
+ "model.vision_model.encoder.layers.18.attn.qkv.weight": "model-00006-of-00007.safetensors",
733
+ "model.vision_model.encoder.layers.18.ls1": "model-00006-of-00007.safetensors",
734
+ "model.vision_model.encoder.layers.18.ls2": "model-00006-of-00007.safetensors",
735
+ "model.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00006-of-00007.safetensors",
736
+ "model.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00006-of-00007.safetensors",
737
+ "model.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00006-of-00007.safetensors",
738
+ "model.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00006-of-00007.safetensors",
739
+ "model.vision_model.encoder.layers.18.norm1.bias": "model-00006-of-00007.safetensors",
740
+ "model.vision_model.encoder.layers.18.norm1.weight": "model-00006-of-00007.safetensors",
741
+ "model.vision_model.encoder.layers.18.norm2.bias": "model-00006-of-00007.safetensors",
742
+ "model.vision_model.encoder.layers.18.norm2.weight": "model-00006-of-00007.safetensors",
743
+ "model.vision_model.encoder.layers.19.attn.proj.bias": "model-00006-of-00007.safetensors",
744
+ "model.vision_model.encoder.layers.19.attn.proj.weight": "model-00006-of-00007.safetensors",
745
+ "model.vision_model.encoder.layers.19.attn.qkv.bias": "model-00006-of-00007.safetensors",
746
+ "model.vision_model.encoder.layers.19.attn.qkv.weight": "model-00006-of-00007.safetensors",
747
+ "model.vision_model.encoder.layers.19.ls1": "model-00006-of-00007.safetensors",
748
+ "model.vision_model.encoder.layers.19.ls2": "model-00006-of-00007.safetensors",
749
+ "model.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00006-of-00007.safetensors",
750
+ "model.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00006-of-00007.safetensors",
751
+ "model.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00006-of-00007.safetensors",
752
+ "model.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00006-of-00007.safetensors",
753
+ "model.vision_model.encoder.layers.19.norm1.bias": "model-00006-of-00007.safetensors",
754
+ "model.vision_model.encoder.layers.19.norm1.weight": "model-00006-of-00007.safetensors",
755
+ "model.vision_model.encoder.layers.19.norm2.bias": "model-00006-of-00007.safetensors",
756
+ "model.vision_model.encoder.layers.19.norm2.weight": "model-00006-of-00007.safetensors",
757
+ "model.vision_model.encoder.layers.2.attn.proj.bias": "model-00006-of-00007.safetensors",
758
+ "model.vision_model.encoder.layers.2.attn.proj.weight": "model-00006-of-00007.safetensors",
759
+ "model.vision_model.encoder.layers.2.attn.qkv.bias": "model-00006-of-00007.safetensors",
760
+ "model.vision_model.encoder.layers.2.attn.qkv.weight": "model-00006-of-00007.safetensors",
761
+ "model.vision_model.encoder.layers.2.ls1": "model-00006-of-00007.safetensors",
762
+ "model.vision_model.encoder.layers.2.ls2": "model-00006-of-00007.safetensors",
763
+ "model.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00006-of-00007.safetensors",
764
+ "model.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00006-of-00007.safetensors",
765
+ "model.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00006-of-00007.safetensors",
766
+ "model.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00006-of-00007.safetensors",
767
+ "model.vision_model.encoder.layers.2.norm1.bias": "model-00006-of-00007.safetensors",
768
+ "model.vision_model.encoder.layers.2.norm1.weight": "model-00006-of-00007.safetensors",
769
+ "model.vision_model.encoder.layers.2.norm2.bias": "model-00006-of-00007.safetensors",
770
+ "model.vision_model.encoder.layers.2.norm2.weight": "model-00006-of-00007.safetensors",
771
+ "model.vision_model.encoder.layers.20.attn.proj.bias": "model-00006-of-00007.safetensors",
772
+ "model.vision_model.encoder.layers.20.attn.proj.weight": "model-00006-of-00007.safetensors",
773
+ "model.vision_model.encoder.layers.20.attn.qkv.bias": "model-00006-of-00007.safetensors",
774
+ "model.vision_model.encoder.layers.20.attn.qkv.weight": "model-00006-of-00007.safetensors",
775
+ "model.vision_model.encoder.layers.20.ls1": "model-00006-of-00007.safetensors",
776
+ "model.vision_model.encoder.layers.20.ls2": "model-00006-of-00007.safetensors",
777
+ "model.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00006-of-00007.safetensors",
778
+ "model.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00006-of-00007.safetensors",
779
+ "model.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00006-of-00007.safetensors",
780
+ "model.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00006-of-00007.safetensors",
781
+ "model.vision_model.encoder.layers.20.norm1.bias": "model-00006-of-00007.safetensors",
782
+ "model.vision_model.encoder.layers.20.norm1.weight": "model-00006-of-00007.safetensors",
783
+ "model.vision_model.encoder.layers.20.norm2.bias": "model-00006-of-00007.safetensors",
784
+ "model.vision_model.encoder.layers.20.norm2.weight": "model-00006-of-00007.safetensors",
785
+ "model.vision_model.encoder.layers.21.attn.proj.bias": "model-00006-of-00007.safetensors",
786
+ "model.vision_model.encoder.layers.21.attn.proj.weight": "model-00006-of-00007.safetensors",
787
+ "model.vision_model.encoder.layers.21.attn.qkv.bias": "model-00006-of-00007.safetensors",
788
+ "model.vision_model.encoder.layers.21.attn.qkv.weight": "model-00006-of-00007.safetensors",
789
+ "model.vision_model.encoder.layers.21.ls1": "model-00006-of-00007.safetensors",
790
+ "model.vision_model.encoder.layers.21.ls2": "model-00006-of-00007.safetensors",
791
+ "model.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00006-of-00007.safetensors",
792
+ "model.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00006-of-00007.safetensors",
793
+ "model.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00006-of-00007.safetensors",
794
+ "model.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00006-of-00007.safetensors",
795
+ "model.vision_model.encoder.layers.21.norm1.bias": "model-00006-of-00007.safetensors",
796
+ "model.vision_model.encoder.layers.21.norm1.weight": "model-00006-of-00007.safetensors",
797
+ "model.vision_model.encoder.layers.21.norm2.bias": "model-00006-of-00007.safetensors",
798
+ "model.vision_model.encoder.layers.21.norm2.weight": "model-00006-of-00007.safetensors",
799
+ "model.vision_model.encoder.layers.22.attn.proj.bias": "model-00006-of-00007.safetensors",
800
+ "model.vision_model.encoder.layers.22.attn.proj.weight": "model-00006-of-00007.safetensors",
801
+ "model.vision_model.encoder.layers.22.attn.qkv.bias": "model-00006-of-00007.safetensors",
802
+ "model.vision_model.encoder.layers.22.attn.qkv.weight": "model-00006-of-00007.safetensors",
803
+ "model.vision_model.encoder.layers.22.ls1": "model-00006-of-00007.safetensors",
804
+ "model.vision_model.encoder.layers.22.ls2": "model-00006-of-00007.safetensors",
805
+ "model.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00006-of-00007.safetensors",
806
+ "model.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00006-of-00007.safetensors",
807
+ "model.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00006-of-00007.safetensors",
808
+ "model.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00006-of-00007.safetensors",
809
+ "model.vision_model.encoder.layers.22.norm1.bias": "model-00006-of-00007.safetensors",
810
+ "model.vision_model.encoder.layers.22.norm1.weight": "model-00006-of-00007.safetensors",
811
+ "model.vision_model.encoder.layers.22.norm2.bias": "model-00006-of-00007.safetensors",
812
+ "model.vision_model.encoder.layers.22.norm2.weight": "model-00006-of-00007.safetensors",
813
+ "model.vision_model.encoder.layers.23.attn.proj.bias": "model-00006-of-00007.safetensors",
814
+ "model.vision_model.encoder.layers.23.attn.proj.weight": "model-00006-of-00007.safetensors",
815
+ "model.vision_model.encoder.layers.23.attn.qkv.bias": "model-00006-of-00007.safetensors",
816
+ "model.vision_model.encoder.layers.23.attn.qkv.weight": "model-00006-of-00007.safetensors",
817
+ "model.vision_model.encoder.layers.23.ls1": "model-00006-of-00007.safetensors",
818
+ "model.vision_model.encoder.layers.23.ls2": "model-00006-of-00007.safetensors",
819
+ "model.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00006-of-00007.safetensors",
820
+ "model.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00006-of-00007.safetensors",
821
+ "model.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00006-of-00007.safetensors",
822
+ "model.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00006-of-00007.safetensors",
823
+ "model.vision_model.encoder.layers.23.norm1.bias": "model-00006-of-00007.safetensors",
824
+ "model.vision_model.encoder.layers.23.norm1.weight": "model-00006-of-00007.safetensors",
825
+ "model.vision_model.encoder.layers.23.norm2.bias": "model-00006-of-00007.safetensors",
826
+ "model.vision_model.encoder.layers.23.norm2.weight": "model-00006-of-00007.safetensors",
827
+ "model.vision_model.encoder.layers.3.attn.proj.bias": "model-00006-of-00007.safetensors",
828
+ "model.vision_model.encoder.layers.3.attn.proj.weight": "model-00006-of-00007.safetensors",
829
+ "model.vision_model.encoder.layers.3.attn.qkv.bias": "model-00006-of-00007.safetensors",
830
+ "model.vision_model.encoder.layers.3.attn.qkv.weight": "model-00006-of-00007.safetensors",
831
+ "model.vision_model.encoder.layers.3.ls1": "model-00006-of-00007.safetensors",
832
+ "model.vision_model.encoder.layers.3.ls2": "model-00006-of-00007.safetensors",
833
+ "model.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00006-of-00007.safetensors",
834
+ "model.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00006-of-00007.safetensors",
835
+ "model.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00006-of-00007.safetensors",
836
+ "model.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00006-of-00007.safetensors",
837
+ "model.vision_model.encoder.layers.3.norm1.bias": "model-00006-of-00007.safetensors",
838
+ "model.vision_model.encoder.layers.3.norm1.weight": "model-00006-of-00007.safetensors",
839
+ "model.vision_model.encoder.layers.3.norm2.bias": "model-00006-of-00007.safetensors",
840
+ "model.vision_model.encoder.layers.3.norm2.weight": "model-00006-of-00007.safetensors",
841
+ "model.vision_model.encoder.layers.4.attn.proj.bias": "model-00006-of-00007.safetensors",
842
+ "model.vision_model.encoder.layers.4.attn.proj.weight": "model-00006-of-00007.safetensors",
843
+ "model.vision_model.encoder.layers.4.attn.qkv.bias": "model-00006-of-00007.safetensors",
844
+ "model.vision_model.encoder.layers.4.attn.qkv.weight": "model-00006-of-00007.safetensors",
845
+ "model.vision_model.encoder.layers.4.ls1": "model-00006-of-00007.safetensors",
846
+ "model.vision_model.encoder.layers.4.ls2": "model-00006-of-00007.safetensors",
847
+ "model.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00006-of-00007.safetensors",
848
+ "model.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00006-of-00007.safetensors",
849
+ "model.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00006-of-00007.safetensors",
850
+ "model.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00006-of-00007.safetensors",
851
+ "model.vision_model.encoder.layers.4.norm1.bias": "model-00006-of-00007.safetensors",
852
+ "model.vision_model.encoder.layers.4.norm1.weight": "model-00006-of-00007.safetensors",
853
+ "model.vision_model.encoder.layers.4.norm2.bias": "model-00006-of-00007.safetensors",
854
+ "model.vision_model.encoder.layers.4.norm2.weight": "model-00006-of-00007.safetensors",
855
+ "model.vision_model.encoder.layers.5.attn.proj.bias": "model-00006-of-00007.safetensors",
856
+ "model.vision_model.encoder.layers.5.attn.proj.weight": "model-00006-of-00007.safetensors",
857
+ "model.vision_model.encoder.layers.5.attn.qkv.bias": "model-00006-of-00007.safetensors",
858
+ "model.vision_model.encoder.layers.5.attn.qkv.weight": "model-00006-of-00007.safetensors",
859
+ "model.vision_model.encoder.layers.5.ls1": "model-00006-of-00007.safetensors",
860
+ "model.vision_model.encoder.layers.5.ls2": "model-00006-of-00007.safetensors",
861
+ "model.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00006-of-00007.safetensors",
862
+ "model.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00006-of-00007.safetensors",
863
+ "model.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00006-of-00007.safetensors",
864
+ "model.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00006-of-00007.safetensors",
865
+ "model.vision_model.encoder.layers.5.norm1.bias": "model-00006-of-00007.safetensors",
866
+ "model.vision_model.encoder.layers.5.norm1.weight": "model-00006-of-00007.safetensors",
867
+ "model.vision_model.encoder.layers.5.norm2.bias": "model-00006-of-00007.safetensors",
868
+ "model.vision_model.encoder.layers.5.norm2.weight": "model-00006-of-00007.safetensors",
869
+ "model.vision_model.encoder.layers.6.attn.proj.bias": "model-00006-of-00007.safetensors",
870
+ "model.vision_model.encoder.layers.6.attn.proj.weight": "model-00006-of-00007.safetensors",
871
+ "model.vision_model.encoder.layers.6.attn.qkv.bias": "model-00006-of-00007.safetensors",
872
+ "model.vision_model.encoder.layers.6.attn.qkv.weight": "model-00006-of-00007.safetensors",
873
+ "model.vision_model.encoder.layers.6.ls1": "model-00006-of-00007.safetensors",
874
+ "model.vision_model.encoder.layers.6.ls2": "model-00006-of-00007.safetensors",
875
+ "model.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00006-of-00007.safetensors",
876
+ "model.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00006-of-00007.safetensors",
877
+ "model.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00006-of-00007.safetensors",
878
+ "model.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00006-of-00007.safetensors",
879
+ "model.vision_model.encoder.layers.6.norm1.bias": "model-00006-of-00007.safetensors",
880
+ "model.vision_model.encoder.layers.6.norm1.weight": "model-00006-of-00007.safetensors",
881
+ "model.vision_model.encoder.layers.6.norm2.bias": "model-00006-of-00007.safetensors",
882
+ "model.vision_model.encoder.layers.6.norm2.weight": "model-00006-of-00007.safetensors",
883
+ "model.vision_model.encoder.layers.7.attn.proj.bias": "model-00006-of-00007.safetensors",
884
+ "model.vision_model.encoder.layers.7.attn.proj.weight": "model-00006-of-00007.safetensors",
885
+ "model.vision_model.encoder.layers.7.attn.qkv.bias": "model-00006-of-00007.safetensors",
886
+ "model.vision_model.encoder.layers.7.attn.qkv.weight": "model-00006-of-00007.safetensors",
887
+ "model.vision_model.encoder.layers.7.ls1": "model-00006-of-00007.safetensors",
888
+ "model.vision_model.encoder.layers.7.ls2": "model-00006-of-00007.safetensors",
889
+ "model.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00006-of-00007.safetensors",
890
+ "model.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00006-of-00007.safetensors",
891
+ "model.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00006-of-00007.safetensors",
892
+ "model.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00006-of-00007.safetensors",
893
+ "model.vision_model.encoder.layers.7.norm1.bias": "model-00006-of-00007.safetensors",
894
+ "model.vision_model.encoder.layers.7.norm1.weight": "model-00006-of-00007.safetensors",
895
+ "model.vision_model.encoder.layers.7.norm2.bias": "model-00006-of-00007.safetensors",
896
+ "model.vision_model.encoder.layers.7.norm2.weight": "model-00006-of-00007.safetensors",
897
+ "model.vision_model.encoder.layers.8.attn.proj.bias": "model-00006-of-00007.safetensors",
898
+ "model.vision_model.encoder.layers.8.attn.proj.weight": "model-00006-of-00007.safetensors",
899
+ "model.vision_model.encoder.layers.8.attn.qkv.bias": "model-00006-of-00007.safetensors",
900
+ "model.vision_model.encoder.layers.8.attn.qkv.weight": "model-00006-of-00007.safetensors",
901
+ "model.vision_model.encoder.layers.8.ls1": "model-00006-of-00007.safetensors",
902
+ "model.vision_model.encoder.layers.8.ls2": "model-00006-of-00007.safetensors",
903
+ "model.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00006-of-00007.safetensors",
904
+ "model.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00006-of-00007.safetensors",
905
+ "model.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00006-of-00007.safetensors",
906
+ "model.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00006-of-00007.safetensors",
907
+ "model.vision_model.encoder.layers.8.norm1.bias": "model-00006-of-00007.safetensors",
908
+ "model.vision_model.encoder.layers.8.norm1.weight": "model-00006-of-00007.safetensors",
909
+ "model.vision_model.encoder.layers.8.norm2.bias": "model-00006-of-00007.safetensors",
910
+ "model.vision_model.encoder.layers.8.norm2.weight": "model-00006-of-00007.safetensors",
911
+ "model.vision_model.encoder.layers.9.attn.proj.bias": "model-00006-of-00007.safetensors",
912
+ "model.vision_model.encoder.layers.9.attn.proj.weight": "model-00006-of-00007.safetensors",
913
+ "model.vision_model.encoder.layers.9.attn.qkv.bias": "model-00006-of-00007.safetensors",
914
+ "model.vision_model.encoder.layers.9.attn.qkv.weight": "model-00006-of-00007.safetensors",
915
+ "model.vision_model.encoder.layers.9.ls1": "model-00006-of-00007.safetensors",
916
+ "model.vision_model.encoder.layers.9.ls2": "model-00006-of-00007.safetensors",
917
+ "model.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00006-of-00007.safetensors",
918
+ "model.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00006-of-00007.safetensors",
919
+ "model.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00006-of-00007.safetensors",
920
+ "model.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00006-of-00007.safetensors",
921
+ "model.vision_model.encoder.layers.9.norm1.bias": "model-00006-of-00007.safetensors",
922
+ "model.vision_model.encoder.layers.9.norm1.weight": "model-00006-of-00007.safetensors",
923
+ "model.vision_model.encoder.layers.9.norm2.bias": "model-00006-of-00007.safetensors",
924
+ "model.vision_model.encoder.layers.9.norm2.weight": "model-00006-of-00007.safetensors",
925
+ "model.vision_projection.mlp.0.weight": "model-00006-of-00007.safetensors",
926
+ "model.vision_projection.mlp.2.weight": "model-00006-of-00007.safetensors",
927
+ "model.vision_projection.pre_proj_layernorm.bias": "model-00006-of-00007.safetensors",
928
+ "model.vision_projection.pre_proj_layernorm.weight": "model-00006-of-00007.safetensors"
929
+ }
930
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ from .flash_attention import FlashAttention
24
+ has_flash_attn = True
25
+ except:
26
+ print('FlashAttention is not installed.')
27
+ has_flash_attn = False
28
+
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+
33
+ class InternRMSNorm(nn.Module):
34
+ def __init__(self, hidden_size, eps=1e-6):
35
+ super().__init__()
36
+ self.weight = nn.Parameter(torch.ones(hidden_size))
37
+ self.variance_epsilon = eps
38
+
39
+ def forward(self, hidden_states):
40
+ input_dtype = hidden_states.dtype
41
+ hidden_states = hidden_states.to(torch.float32)
42
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
43
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
44
+ return self.weight * hidden_states.to(input_dtype)
45
+
46
+
47
+ try:
48
+ from apex.normalization import FusedRMSNorm
49
+
50
+ InternRMSNorm = FusedRMSNorm # noqa
51
+
52
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
53
+ except ImportError:
54
+ # using the normal InternRMSNorm
55
+ pass
56
+ except Exception:
57
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
58
+ pass
59
+
60
+
61
+ NORM2FN = {
62
+ 'rms_norm': InternRMSNorm,
63
+ 'layer_norm': nn.LayerNorm,
64
+ }
65
+
66
+
67
+ class InternVisionEmbeddings(nn.Module):
68
+ def __init__(self, config: InternVisionConfig):
69
+ super().__init__()
70
+ self.config = config
71
+ self.embed_dim = config.hidden_size
72
+ self.image_size = config.image_size
73
+ self.patch_size = config.patch_size
74
+
75
+ self.class_embedding = nn.Parameter(
76
+ torch.randn(1, 1, self.embed_dim),
77
+ )
78
+
79
+ self.patch_embedding = nn.Conv2d(
80
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
81
+ )
82
+
83
+ self.num_patches = (self.image_size // self.patch_size) ** 2
84
+ self.num_positions = self.num_patches + 1
85
+
86
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
87
+
88
+ def _get_pos_embed(self, pos_embed, H, W):
89
+ target_dtype = pos_embed.dtype
90
+ pos_embed = pos_embed.float().reshape(
91
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
92
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\
93
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
94
+ return pos_embed
95
+
96
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
97
+ target_dtype = self.patch_embedding.weight.dtype
98
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
99
+ batch_size, _, height, width = patch_embeds.shape
100
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
101
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
102
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
103
+ position_embedding = torch.cat([
104
+ self.position_embedding[:, :1, :],
105
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
106
+ ], dim=1)
107
+ embeddings = embeddings + position_embedding.to(target_dtype)
108
+ return embeddings
109
+
110
+
111
+ class InternAttention(nn.Module):
112
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
113
+
114
+ def __init__(self, config: InternVisionConfig):
115
+ super().__init__()
116
+ self.config = config
117
+ self.embed_dim = config.hidden_size
118
+ self.num_heads = config.num_attention_heads
119
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
120
+ if config.use_flash_attn and not has_flash_attn:
121
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
122
+ self.head_dim = self.embed_dim // self.num_heads
123
+ if self.head_dim * self.num_heads != self.embed_dim:
124
+ raise ValueError(
125
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
126
+ f' {self.num_heads}).'
127
+ )
128
+
129
+ self.scale = self.head_dim ** -0.5
130
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
131
+ self.attn_drop = nn.Dropout(config.attention_dropout)
132
+ self.proj_drop = nn.Dropout(config.dropout)
133
+
134
+ self.qk_normalization = config.qk_normalization
135
+
136
+ if self.qk_normalization:
137
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
138
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
139
+
140
+ if self.use_flash_attn:
141
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
142
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
143
+
144
+ def _naive_attn(self, x):
145
+ B, N, C = x.shape
146
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
147
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
148
+
149
+ if self.qk_normalization:
150
+ B_, H_, N_, D_ = q.shape
151
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
152
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
153
+
154
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
155
+ attn = attn.softmax(dim=-1)
156
+ attn = self.attn_drop(attn)
157
+
158
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
159
+ x = self.proj(x)
160
+ x = self.proj_drop(x)
161
+ return x
162
+
163
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
164
+ qkv = self.qkv(x)
165
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
166
+
167
+ if self.qk_normalization:
168
+ q, k, v = qkv.unbind(2)
169
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
170
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
171
+ qkv = torch.stack([q, k, v], dim=2)
172
+
173
+ context, _ = self.inner_attn(
174
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
175
+ )
176
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
177
+ outs = self.proj_drop(outs)
178
+ return outs
179
+
180
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
181
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
182
+ return x
183
+
184
+
185
+ class InternMLP(nn.Module):
186
+ def __init__(self, config: InternVisionConfig):
187
+ super().__init__()
188
+ self.config = config
189
+ self.act = ACT2FN[config.hidden_act]
190
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
191
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
192
+
193
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
194
+ hidden_states = self.fc1(hidden_states)
195
+ hidden_states = self.act(hidden_states)
196
+ hidden_states = self.fc2(hidden_states)
197
+ return hidden_states
198
+
199
+
200
+ class InternVisionEncoderLayer(nn.Module):
201
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
202
+ super().__init__()
203
+ self.embed_dim = config.hidden_size
204
+ self.intermediate_size = config.intermediate_size
205
+ self.norm_type = config.norm_type
206
+
207
+ self.attn = InternAttention(config)
208
+ self.mlp = InternMLP(config)
209
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
210
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
211
+
212
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
213
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
214
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
215
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
216
+
217
+ def forward(
218
+ self,
219
+ hidden_states: torch.Tensor,
220
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
221
+ """
222
+ Args:
223
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
224
+ """
225
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
226
+
227
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
228
+
229
+ return hidden_states
230
+
231
+
232
+ class InternVisionEncoder(nn.Module):
233
+ """
234
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
235
+ [`InternEncoderLayer`].
236
+
237
+ Args:
238
+ config (`InternConfig`):
239
+ The corresponding vision configuration for the `InternEncoder`.
240
+ """
241
+
242
+ def __init__(self, config: InternVisionConfig):
243
+ super().__init__()
244
+ self.config = config
245
+ # stochastic depth decay rule
246
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
247
+ self.layers = nn.ModuleList([
248
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
249
+ self.gradient_checkpointing = True
250
+
251
+ def forward(
252
+ self,
253
+ inputs_embeds,
254
+ output_hidden_states: Optional[bool] = None,
255
+ return_dict: Optional[bool] = None,
256
+ ) -> Union[Tuple, BaseModelOutput]:
257
+ r"""
258
+ Args:
259
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
260
+ Embedded representation of the inputs. Should be float, not int tokens.
261
+ output_hidden_states (`bool`, *optional*):
262
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
263
+ for more detail.
264
+ return_dict (`bool`, *optional*):
265
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
266
+ """
267
+ output_hidden_states = (
268
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
269
+ )
270
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
271
+
272
+ encoder_states = () if output_hidden_states else None
273
+ hidden_states = inputs_embeds
274
+
275
+ for idx, encoder_layer in enumerate(self.layers):
276
+ if output_hidden_states:
277
+ encoder_states = encoder_states + (hidden_states,)
278
+ if self.gradient_checkpointing and self.training:
279
+ layer_outputs = torch.utils.checkpoint.checkpoint(
280
+ encoder_layer,
281
+ hidden_states)
282
+ else:
283
+ layer_outputs = encoder_layer(
284
+ hidden_states,
285
+ )
286
+ hidden_states = layer_outputs
287
+
288
+ if output_hidden_states:
289
+ encoder_states = encoder_states + (hidden_states,)
290
+
291
+ if not return_dict:
292
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
293
+ return BaseModelOutput(
294
+ last_hidden_state=hidden_states, hidden_states=encoder_states
295
+ )
296
+
297
+
298
+ class InternVisionModel(PreTrainedModel):
299
+ main_input_name = 'pixel_values'
300
+ config_class = InternVisionConfig
301
+ _no_split_modules = ['InternVisionEncoderLayer']
302
+
303
+ def __init__(self, config: InternVisionConfig):
304
+ super().__init__(config)
305
+ self.config = config
306
+
307
+ self.embeddings = InternVisionEmbeddings(config)
308
+ self.encoder = InternVisionEncoder(config)
309
+
310
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
311
+ pos_emb = self.embeddings.position_embedding
312
+ _, num_positions, embed_dim = pos_emb.shape
313
+ cls_emb = pos_emb[:, :1, :]
314
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
315
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
316
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
317
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
318
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
319
+ self.embeddings.image_size = new_size
320
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
321
+
322
+ def get_input_embeddings(self):
323
+ return self.embeddings
324
+
325
+ def forward(
326
+ self,
327
+ pixel_values: Optional[torch.FloatTensor] = None,
328
+ output_hidden_states: Optional[bool] = None,
329
+ return_dict: Optional[bool] = None,
330
+ pixel_embeds: Optional[torch.FloatTensor] = None,
331
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
332
+ output_hidden_states = (
333
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
334
+ )
335
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
336
+
337
+ if pixel_values is None and pixel_embeds is None:
338
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
339
+
340
+ if pixel_embeds is not None:
341
+ hidden_states = pixel_embeds
342
+ else:
343
+ if len(pixel_values.shape) == 4:
344
+ hidden_states = self.embeddings(pixel_values)
345
+ else:
346
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
347
+ encoder_outputs = self.encoder(
348
+ inputs_embeds=hidden_states,
349
+ output_hidden_states=output_hidden_states,
350
+ return_dict=return_dict,
351
+ )
352
+ last_hidden_state = encoder_outputs.last_hidden_state
353
+ pooled_output = last_hidden_state[:, 0, :]
354
+
355
+ if not return_dict:
356
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
357
+
358
+ return BaseModelOutputWithPooling(
359
+ last_hidden_state=last_hidden_state,
360
+ pooler_output=pooled_output,
361
+ hidden_states=encoder_outputs.hidden_states,
362
+ attentions=encoder_outputs.attentions,
363
+ )
modeling_long_vita.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+
3
+ from typing import Callable, List, Optional, Tuple, Union
4
+
5
+ import torch
6
+ from torch import nn
7
+
8
+ from transformers.activations import ACT2FN
9
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
10
+ from transformers.generation import GenerationMixin
11
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
12
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
13
+ from transformers.modeling_outputs import (
14
+ BaseModelOutputWithPast,
15
+ CausalLMOutputWithPast,
16
+ QuestionAnsweringModelOutput,
17
+ SequenceClassifierOutputWithPast,
18
+ TokenClassifierOutput,
19
+ )
20
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
21
+ from transformers.modeling_utils import PreTrainedModel
22
+ from transformers.processing_utils import Unpack
23
+ from transformers.utils import (
24
+ LossKwargs,
25
+ add_code_sample_docstrings,
26
+ add_start_docstrings,
27
+ add_start_docstrings_to_model_forward,
28
+ logging,
29
+ replace_return_docstrings,
30
+ )
31
+ from .configuration_long_vita import LongVITAConfig
32
+
33
+
34
+ logger = logging.get_logger(__name__)
35
+
36
+ from transformers import Qwen2Model, Qwen2ForCausalLM
37
+
38
+ # from .visual import VisionTransformer
39
+ from .modeling_intern_vit import InternVisionModel
40
+ from .resampler_projector import ResamplerProjector
41
+
42
+ from .configuration_intern_vit import InternVisionConfig
43
+ try:
44
+ from .flash_attention import FlashAttention
45
+ has_flash_attn = True
46
+ except:
47
+ print('FlashAttention is not installed.')
48
+ has_flash_attn = False
49
+
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+
54
+ _CONFIG_FOR_DOC = "LongVITAConfig"
55
+
56
+
57
+ class LongVITAModel(Qwen2Model):
58
+ config_class = LongVITAConfig
59
+
60
+ _no_split_modules = ["Qwen2DecoderLayer", "VisionTransformer"]
61
+ # _no_split_modules = ["Qwen2DecoderLayer", "VisualAttentionBlock"]
62
+
63
+ def __init__(self, config: LongVITAConfig):
64
+ super().__init__(config)
65
+
66
+ # self.visual = VisionTransformer(**config.visual)
67
+ visual_config = InternVisionConfig(**config.visual)
68
+ self.vision_model = InternVisionModel(visual_config)
69
+ self.vision_projection = ResamplerProjector(config, visual_config)
70
+
71
+ # Initialize weights and apply final processing
72
+ self.post_init()
73
+
74
+ def forward(
75
+ self,
76
+ input_ids: torch.LongTensor = None,
77
+ attention_mask: Optional[torch.Tensor] = None,
78
+ images: Optional[torch.FloatTensor] = None,
79
+ image_indices: Optional[torch.LongTensor] = None,
80
+ position_ids: Optional[torch.LongTensor] = None,
81
+ past_key_values: Optional[Cache] = None,
82
+ inputs_embeds: Optional[torch.FloatTensor] = None,
83
+ use_cache: Optional[bool] = None,
84
+ output_attentions: Optional[bool] = None,
85
+ output_hidden_states: Optional[bool] = None,
86
+ return_dict: Optional[bool] = None,
87
+ cache_position: Optional[torch.LongTensor] = None,
88
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
89
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
90
+ if (past_key_values is None or len(past_key_values) == 0) and images is not None:
91
+ image_embeds = self.vision_model(images).last_hidden_state
92
+ # if torch.distributed.get_rank() == 0:
93
+ # print(f"image_embeds {image_embeds.size()}")
94
+ assert image_embeds.shape[0] == len(images)
95
+ fake_images = None
96
+
97
+ image_embeds = image_embeds[:, 1:, :]
98
+ image_embeds = self.vision_projection(image_embeds)
99
+
100
+ # torch.set_printoptions(threshold=100_000)
101
+ # if torch.distributed.get_rank() == 0:
102
+ # if True:
103
+ # print(f"image_embeds {image_embeds.size()}")
104
+ # print(f"images {images.size()}")
105
+ # print(f"input_ids {input_ids.size()}")
106
+ # # print(f"input_ids {input_ids}")
107
+ # print(f"image_indices {image_indices.size()}")
108
+ # # print(f"image_indices {image_indices}")
109
+
110
+ elif self.training:
111
+ device = self.get_input_embeddings().weight.data.device
112
+ dtype = self.get_input_embeddings().weight.data.dtype
113
+ fake_images = torch.ones((1, 3, self.config.visual["image_size"], self.config.visual["image_size"]), dtype=dtype, device=device)
114
+ image_embeds = self.vision_model(fake_images).last_hidden_state
115
+ image_embeds = image_embeds[:, 1:, :]
116
+ image_embeds = self.vision_projection(image_embeds)
117
+ else:
118
+ fake_images = None
119
+ image_embeds = None
120
+
121
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
122
+ output_hidden_states = (
123
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
124
+ )
125
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
126
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
127
+
128
+ if (input_ids is None) ^ (inputs_embeds is not None):
129
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
130
+
131
+ if self.gradient_checkpointing and self.training and use_cache:
132
+ logger.warning_once(
133
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
134
+ )
135
+ use_cache = False
136
+
137
+ if inputs_embeds is None:
138
+ inputs_embeds = self.embed_tokens(input_ids)
139
+
140
+ if fake_images is not None:
141
+ inputs_embeds = inputs_embeds + image_embeds.mean() * 0.0
142
+ elif image_embeds is not None:
143
+ inputs_embeds = inputs_embeds.clone()
144
+ image_embeds = image_embeds.to(inputs_embeds.device)
145
+ image_indices = image_indices.to(inputs_embeds.device)
146
+ indices_b, indices_s = image_indices.unbind(dim=0)
147
+ inputs_embeds[indices_b.view(-1), indices_s.view(-1)] = image_embeds.view(-1, image_embeds.shape[-1])
148
+ # inputs_embeds = inputs_embeds + image_embeds.mean() * 0.0
149
+
150
+ if use_cache and past_key_values is None:
151
+ past_key_values = DynamicCache()
152
+
153
+ if cache_position is None:
154
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
155
+ cache_position = torch.arange(
156
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
157
+ )
158
+
159
+ if position_ids is None:
160
+ position_ids = cache_position.unsqueeze(0)
161
+
162
+ causal_mask = self._update_causal_mask(
163
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
164
+ )
165
+
166
+ hidden_states = inputs_embeds
167
+
168
+ # create position embeddings to be shared across the decoder layers
169
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
170
+
171
+ # decoder layers
172
+ all_hidden_states = () if output_hidden_states else None
173
+ all_self_attns = () if output_attentions else None
174
+
175
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
176
+ if output_hidden_states:
177
+ all_hidden_states += (hidden_states,)
178
+
179
+ if self.gradient_checkpointing and self.training:
180
+ layer_outputs = self._gradient_checkpointing_func(
181
+ decoder_layer.__call__,
182
+ hidden_states,
183
+ causal_mask,
184
+ position_ids,
185
+ past_key_values,
186
+ output_attentions,
187
+ use_cache,
188
+ cache_position,
189
+ position_embeddings,
190
+ )
191
+ else:
192
+ layer_outputs = decoder_layer(
193
+ hidden_states,
194
+ attention_mask=causal_mask,
195
+ position_ids=position_ids,
196
+ past_key_value=past_key_values,
197
+ output_attentions=output_attentions,
198
+ use_cache=use_cache,
199
+ cache_position=cache_position,
200
+ position_embeddings=position_embeddings,
201
+ **flash_attn_kwargs,
202
+ )
203
+
204
+ hidden_states = layer_outputs[0]
205
+
206
+ if output_attentions:
207
+ all_self_attns += (layer_outputs[1],)
208
+
209
+ hidden_states = self.norm(hidden_states)
210
+
211
+ # add hidden states from the last decoder layer
212
+ if output_hidden_states:
213
+ all_hidden_states += (hidden_states,)
214
+
215
+ output = BaseModelOutputWithPast(
216
+ last_hidden_state=hidden_states,
217
+ past_key_values=past_key_values if use_cache else None,
218
+ hidden_states=all_hidden_states,
219
+ attentions=all_self_attns,
220
+ )
221
+ return output if return_dict else output.to_tuple()
222
+
223
+
224
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
225
+
226
+
227
+ class LongVITAForCausalLM(Qwen2ForCausalLM):
228
+ config_class = LongVITAConfig
229
+
230
+ def __init__(self, config):
231
+ super().__init__(config)
232
+ self.model = LongVITAModel(config)
233
+
234
+ # Initialize weights and apply final processing
235
+ self.post_init()
236
+
237
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
238
+ def forward(
239
+ self,
240
+ input_ids: torch.LongTensor = None,
241
+ attention_mask: Optional[torch.Tensor] = None,
242
+ images: Optional[torch.FloatTensor] = None,
243
+ image_indices: Optional[torch.LongTensor] = None,
244
+ position_ids: Optional[torch.LongTensor] = None,
245
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
246
+ inputs_embeds: Optional[torch.FloatTensor] = None,
247
+ labels: Optional[torch.LongTensor] = None,
248
+ use_cache: Optional[bool] = None,
249
+ output_attentions: Optional[bool] = None,
250
+ output_hidden_states: Optional[bool] = None,
251
+ return_dict: Optional[bool] = None,
252
+ cache_position: Optional[torch.LongTensor] = None,
253
+ num_logits_to_keep: int = 0,
254
+ **kwargs: Unpack[KwargsForCausalLM],
255
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
256
+ r"""
257
+ Args:
258
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
259
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
260
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
261
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
262
+
263
+ num_logits_to_keep (`int`, *optional*):
264
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
265
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
266
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
267
+
268
+ Returns:
269
+
270
+ Example:
271
+
272
+ ```python
273
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
274
+
275
+ >>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
276
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
277
+
278
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
279
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
280
+
281
+ >>> # Generate
282
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
283
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
284
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
285
+ ```"""
286
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
287
+ output_hidden_states = (
288
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
289
+ )
290
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
291
+
292
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
293
+ outputs = self.model(
294
+ input_ids=input_ids,
295
+ attention_mask=attention_mask,
296
+ images=images,
297
+ image_indices=image_indices,
298
+ position_ids=position_ids,
299
+ past_key_values=past_key_values,
300
+ inputs_embeds=inputs_embeds,
301
+ use_cache=use_cache,
302
+ output_attentions=output_attentions,
303
+ output_hidden_states=output_hidden_states,
304
+ return_dict=return_dict,
305
+ cache_position=cache_position,
306
+ **kwargs,
307
+ )
308
+
309
+ hidden_states = outputs[0]
310
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
311
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
312
+
313
+ loss = None
314
+ if labels is not None:
315
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
316
+
317
+ if not return_dict:
318
+ output = (logits,) + outputs[1:]
319
+ return (loss,) + output if loss is not None else output
320
+
321
+ return CausalLMOutputWithPast(
322
+ loss=loss,
323
+ logits=logits,
324
+ past_key_values=outputs.past_key_values,
325
+ hidden_states=outputs.hidden_states,
326
+ attentions=outputs.attentions,
327
+ )
resampler_projector.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ import math
5
+
6
+
7
+
8
+ class ResamplerProjector(nn.Module):
9
+ def __init__(self, config, vision_model_config):
10
+ super().__init__()
11
+ self.hw = vision_model_config.image_size // vision_model_config.patch_size
12
+
13
+ self.vision_downsample_ratio = 0.5
14
+ proj_input_size = vision_model_config.hidden_size * int(1 / self.vision_downsample_ratio) ** 2
15
+
16
+ self.pre_proj_layernorm = torch.nn.LayerNorm(proj_input_size)
17
+
18
+ self.mlp = nn.Sequential(
19
+ nn.Linear(proj_input_size, vision_model_config.hidden_size, bias=False),
20
+ nn.GELU(),
21
+ nn.Linear(vision_model_config.hidden_size, config.hidden_size, bias=False),
22
+ )
23
+ self.mlp.apply(init_weights)
24
+ self.pre_proj_layernorm.apply(init_weights)
25
+
26
+ def forward(self, x, *args, **kwargs):
27
+ x = x.reshape(x.shape[0], self.hw, self.hw, -1)
28
+ x = pixel_shuffle(x, scale_factor=self.vision_downsample_ratio)
29
+ x = x.reshape(x.shape[0], -1, x.shape[-1])
30
+ x = self.pre_proj_layernorm(x)
31
+ x = self.mlp(x)
32
+ # print(torch.distributed.get_rank(), {name: [param, param.grad] for name, param in self.pre_proj_layernorm.named_parameters()})
33
+ # print(torch.distributed.get_rank(), {name: [param, param.grad] for name, param in self.mlp.named_parameters()})
34
+ return x
35
+
36
+ def pixel_shuffle(x, scale_factor=0.5):
37
+ n, w, h, c = x.size()
38
+ # N, W, H, C --> N, W, H * scale, C // scale
39
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
40
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
41
+ x = x.permute(0, 2, 1, 3).contiguous()
42
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
43
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
44
+ int(c / (scale_factor * scale_factor)))
45
+ x = x.permute(0, 2, 1, 3).contiguous()
46
+ return x
47
+
48
+ def pixel_shuffle_v2(x, scale_stride=2):
49
+ n, w, h, c = x.size()
50
+ assert w == h
51
+ pl = (scale_stride - (h % scale_stride)) % scale_stride
52
+ x = torch.nn.functional.pad(x, (0, 0, 0, pl, 0, pl), "constant", 0)
53
+ h += pl
54
+ w += pl
55
+
56
+ x = x.reshape(n, w // scale_stride, scale_stride, h // scale_stride, scale_stride, c)
57
+ x = x.permute(0, 1, 3, 2, 4, 5)
58
+ x = x.flatten(3)
59
+ x = x.reshape(n, -1, scale_stride * scale_stride * c)
60
+ return x
61
+
62
+ def init_weights(m):
63
+ if isinstance(m, nn.Linear):
64
+ torch.nn.init.normal_(m.weight, mean=0.0, std=0.02)
65
+ if m.bias is not None:
66
+ torch.nn.init.zeros_(m.bias)
67
+
68
+ if isinstance(m, nn.LayerNorm):
69
+ torch.nn.init.ones_(m.weight)
70
+ torch.nn.init.zeros_(m.bias)
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82ebe7df62381b5b3b9bd7f96b64fa736ec80c6aeff88d08eee191b96c63d82d
3
+ size 11425032
tokenizer_config.json ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<img>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "151666": {
190
+ "content": "</img>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "151667": {
198
+ "content": "<IMG_CONTEXT>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "151668": {
206
+ "content": "<vid>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "151669": {
214
+ "content": "</vid>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "151670": {
222
+ "content": "<VID_CONTEXT>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "151671": {
230
+ "content": "<patch>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "151672": {
238
+ "content": "</patch>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "151673": {
246
+ "content": "<PATCH_CONTEXT>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "151674": {
254
+ "content": "<quad>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "151675": {
262
+ "content": "</quad>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "151676": {
270
+ "content": "<ref>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "151677": {
278
+ "content": "</ref>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "151678": {
286
+ "content": "<box>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "151679": {
294
+ "content": "</box>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "151680": {
302
+ "content": "<image>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": true
308
+ },
309
+ "151681": {
310
+ "content": "<video>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": true
316
+ }
317
+ },
318
+ "additional_special_tokens": [
319
+ "<|im_start|>",
320
+ "<|im_end|>",
321
+ "<|object_ref_start|>",
322
+ "<|object_ref_end|>",
323
+ "<|box_start|>",
324
+ "<|box_end|>",
325
+ "<|quad_start|>",
326
+ "<|quad_end|>",
327
+ "<|vision_start|>",
328
+ "<|vision_end|>",
329
+ "<|vision_pad|>",
330
+ "<|image_pad|>",
331
+ "<|video_pad|>"
332
+ ],
333
+ "bos_token": null,
334
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
335
+ "clean_up_tokenization_spaces": false,
336
+ "eos_token": "<|im_end|>",
337
+ "errors": "replace",
338
+ "extra_special_tokens": {},
339
+ "model_max_length": 1310720,
340
+ "pad_token": "<|endoftext|>",
341
+ "split_special_tokens": false,
342
+ "tokenizer_class": "Qwen2Tokenizer",
343
+ "unk_token": null
344
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff