File size: 4,763 Bytes
606bb52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c41d138
606bb52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c41d138
606bb52
 
 
 
 
 
 
 
 
 
 
 
c41d138
606bb52
 
 
 
 
 
 
 
 
 
 
 
 
c41d138
606bb52
c41d138
606bb52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import math
from typing import Optional

from .node import CognitiveNode

class DynamicCognitiveNet(nn.Module):
    """Self-organizing cognitive network with structure learning"""
    def __init__(self, input_size: int, output_size: int):
        super().__init__()
        self.input_size = input_size
        self.output_size = output_size
        
        # Initialize core nodes
        self.nodes = nn.ModuleDict({
            f'input_{i}': CognitiveNode(i, 1) for i in range(input_size)
        })
        self.output_nodes = nn.ModuleList([
            CognitiveNode(input_size + i, 1) for i in range(output_size)
        ])
        
        # Structure learning parameters
        self.connection_strength = nn.ParameterDict()
        self.init_connections()
        
        # Emotional context
        self.emotional_state = nn.Parameter(torch.tensor(0.0))
        self.learning_rate = 0.01
        
        # Adaptive learning
        self.optimizer = optim.AdamW(self.parameters(), lr=0.001)
        self.loss_fn = nn.MSELoss()
        
    def init_connections(self):
        """Initialize sparse random connections"""
        for i in range(self.input_size):
            for out_node in self.output_nodes:
                conn_id = f'input_{i}->{out_node.id}'
                self.connection_strength[conn_id] = nn.Parameter(
                    torch.randn(1) * 0.1
                )
                
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # Process inputs
        activations = {}
        for i in range(self.input_size):
            node = self.nodes[f'input_{i}']
            activations[node.id] = node(x[i].unsqueeze(0))
            
        # Propagate through network
        outputs = []
        for out_node in self.output_nodes:
            input_acts = []
            for i in range(self.input_size):
                conn_id = f'input_{i}->{out_node.id}'
                weight = self.connection_strength.get(conn_id, torch.tensor(0.0))
                input_acts.append(activations[i] * torch.sigmoid(weight))
                
            if input_acts:
                combined = sum(input_acts) / math.sqrt(len(input_acts))
                out_act = out_node(combined.unsqueeze(0))
                outputs.append(out_act)
                
        return torch.cat(outputs)
    
    def structural_update(self, reward: float):
        """Adapt network structure based on performance"""
        # Strengthen productive connections
        for conn_id, weight in self.connection_strength.items():
            if reward > 0:
                new_strength = weight + self.learning_rate * reward
            else:
                new_strength = weight * 0.9
            self.connection_strength[conn_id].data = torch.clamp(new_strength, -1, 1)
            
        # Add new connections if performance is poor
        if reward < -0.5 and torch.rand(1).item() < 0.3:
            new_conn = self._create_new_connection()
            if new_conn:
                self.connection_strength[new_conn] = nn.Parameter(
                    torch.randn(1) * 0.1
                )
                
    def _create_new_connection(self) -> Optional[str]:
        """Create new random connection between underutilized nodes"""
        # Find least active nodes
        node_activations = {
            node_id: sum(node.recent_activations.values()) / len(node.recent_activations)
            for node_id, node in self.nodes.items()
            if node.recent_activations
        }
        
        if not node_activations:
            return None
            
        # Select random underutilized node pair
        sorted_nodes = sorted(node_activations.items(), key=lambda x: x[1])
        if len(sorted_nodes) < 2:
            return None
            
        source = sorted_nodes[0][0]
        target = sorted_nodes[1][0]
        
        return f"{source}->{target}"
    
    def train_step(self, x: torch.Tensor, y: torch.Tensor) -> float:
        """Execute a single training step"""
        self.optimizer.zero_grad()
        pred = self(x)
        loss = self.loss_fn(pred, y)
        
        # Add structural regularization
        reg_loss = sum(torch.abs(w).mean() for w in self.connection_strength.values())
        total_loss = loss + 0.01 * reg_loss
        
        total_loss.backward()
        self.optimizer.step()
        
        # Update emotional context
        self.emotional_state.data = torch.sigmoid(
            self.emotional_state + (0.5 - loss.item()) * 0.1
        )
        
        # Structural updates
        self.structural_update(reward=0.5 - loss.item())
        
        return total_loss.item()