vincentiusyoshuac commited on
Commit
655630b
·
verified ·
1 Parent(s): 579f3f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -3
README.md CHANGED
@@ -1,3 +1,132 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Cognitive Network
2
+
3
+ A PyTorch implementation of a differentiable cognitive network with dynamic structure learning, memory consolidation, and neurotransmitter-modulated plasticity.
4
+
5
+ ## Features
6
+
7
+ - 🧠 Dynamic network structure that evolves based on performance
8
+ - 💭 Differentiable memory system with importance-based consolidation
9
+ - 🔄 Hebbian plasticity with neurotransmitter modulation
10
+ - 🎯 Self-organizing architecture with adaptive connections
11
+ - 💡 Emotional context integration for learning modulation
12
+
13
+ ## Installation
14
+
15
+ ```bash
16
+ pip install cognitive-net
17
+ ```
18
+
19
+ Or install from source:
20
+
21
+ ```bash
22
+ git clone https://github.com/yourusername/cognitive-net.git
23
+ cd cognitive-net
24
+ pip install -e .
25
+ ```
26
+
27
+ ## Quick Start
28
+
29
+ ```python
30
+ import torch
31
+ from cognitive_net import DynamicCognitiveNet
32
+
33
+ # Initialize network
34
+ net = DynamicCognitiveNet(input_size=10, output_size=2)
35
+
36
+ # Sample data
37
+ x = torch.randn(10)
38
+ y = torch.randn(2)
39
+
40
+ # Training step
41
+ loss = net.train_step(x, y)
42
+ print(f"Training loss: {loss:.4f}")
43
+ ```
44
+
45
+ ## Components
46
+
47
+ ### CognitiveMemory
48
+
49
+ The memory system implements:
50
+ - Importance-based memory storage
51
+ - Adaptive consolidation
52
+ - Attention-based retrieval
53
+
54
+ ### CognitiveNode
55
+
56
+ Individual nodes feature:
57
+ - Dynamic weight plasticity
58
+ - Neurotransmitter modulation
59
+ - Local memory systems
60
+
61
+ ### DynamicCognitiveNet
62
+
63
+ The network provides:
64
+ - Self-organizing structure
65
+ - Performance-based connection updates
66
+ - Emotional context integration
67
+ - Adaptive learning mechanisms
68
+
69
+ ## Usage Examples
70
+
71
+ ### Basic Training Loop
72
+
73
+ ```python
74
+ # Initialize network
75
+ net = DynamicCognitiveNet(input_size=5, output_size=1)
76
+
77
+ # Training data
78
+ X = torch.randn(100, 5)
79
+ y = torch.randn(100, 1)
80
+
81
+ # Training loop
82
+ for epoch in range(10):
83
+ total_loss = 0
84
+ for i in range(len(X)):
85
+ loss = net.train_step(X[i], y[i])
86
+ total_loss += loss
87
+ print(f"Epoch {epoch+1}, Average Loss: {total_loss/len(X):.4f}")
88
+ ```
89
+
90
+ ### Memory Usage
91
+
92
+ ```python
93
+ from cognitive_net import CognitiveMemory
94
+
95
+ # Initialize memory system
96
+ memory = CognitiveMemory(context_size=64)
97
+
98
+ # Store new memory
99
+ context = torch.randn(64)
100
+ memory.add_memory(context, activation=0.8)
101
+
102
+ # Retrieve similar contexts
103
+ query = torch.randn(64)
104
+ retrieved = memory.retrieve(query)
105
+ ```
106
+
107
+ ## Contributing
108
+
109
+ Contributions are welcome! Please feel free to submit a Pull Request.
110
+
111
+ ## License
112
+
113
+ This project is licensed under the MIT License - see the LICENSE file for details.
114
+
115
+ ## Citation
116
+
117
+ If you use this code in your research, please cite:
118
+
119
+ ```bibtex
120
+ @software{cognitive_net2024,
121
+ title = {Cognitive Network: Dynamic Structure Learning with Memory},
122
+ author = {Your Name},
123
+ year = {2024},
124
+ publisher = {GitHub},
125
+ url = {https://github.com/yourusername/cognitive-net}
126
+ }
127
+ ```
128
+
129
+ ## Acknowledgments
130
+
131
+ - PyTorch team for the excellent deep learning framework
132
+ - Research community for inspiration and feedback