# cognitive_net/memory.py import torch import torch.nn as nn import torch.nn.functional as F from collections import deque from typing import Deque, Dict, Any class CognitiveMemory(nn.Module): """Differentiable memory system with biological consolidation mechanisms""" def __init__(self, context_size: int, capacity: int = 100): super().__init__() self.context_size = context_size self.capacity = capacity self.memory_queue: Deque[Dict[str, Any]] = deque(maxlen=capacity) # Memory projection layers with adaptive scaling self.key_proj = nn.Linear(context_size, 64) self.value_proj = nn.Linear(context_size, 64) self.importance_decay = nn.Parameter(torch.tensor(0.95)) # Consolidation parameters self.consolidation_threshold = 0.7 self.age_decay = 0.1 def add_memory(self, context: torch.Tensor, activation: float): """Store memory with dynamic importance weighting""" importance = torch.sigmoid(torch.tensor(activation * 0.5 + 0.2)) self.memory_queue.append({ 'context': context.detach().clone(), 'importance': importance, 'age': torch.tensor(0.0) }) def consolidate_memories(self): """Memory optimization through importance-based pruning""" new_queue = deque(maxlen=self.capacity) for mem in self.memory_queue: mem['importance'] *= self.importance_decay mem['age'] += self.age_decay if mem['importance'] > 0.2: new_queue.append(mem) self.memory_queue = new_queue def retrieve(self, query: torch.Tensor) -> torch.Tensor: """Content-based memory retrieval with attention""" if not self.memory_queue: return torch.zeros(64, device=query.device) contexts = torch.stack([m['context'] for m in self.memory_queue]) keys = self.key_proj(contexts) values = self.value_proj(contexts) query_proj = self.key_proj(query.unsqueeze(0)) scores = F.softmax(keys @ query_proj.T, dim=0) return (scores * values).sum(dim=0)