import torch import torch.nn as nn import torch.nn.functional as F from collections import deque from typing import Dict, List, Optional, Tuple class CognitiveMemory(nn.Module): """Differentiable memory system with consolidation and retrieval""" def __init__(self, context_size: int, capacity: int = 100): super().__init__() self.context_size = context_size self.capacity = capacity self.memory_queue = deque(maxlen=capacity) # Memory importance parameters self.importance_decay = nn.Parameter(torch.tensor(0.95)) self.consolidation_threshold = 0.7 # Memory projection layers self.key_proj = nn.Linear(context_size, 64) self.value_proj = nn.Linear(context_size, 64) def add_memory(self, context: torch.Tensor, activation: float): """Store new memory with adaptive importance""" importance = torch.sigmoid(torch.tensor(activation * 0.5 + 0.2)) self.memory_queue.append({ 'context': context.detach(), 'importance': importance, 'age': 0.0 }) def consolidate_memories(self): """Memory consolidation through importance reweighting""" for mem in self.memory_queue: mem['importance'] *= self.importance_decay mem['age'] += 0.1 # Remove unimportant memories self.memory_queue = deque( [m for m in self.memory_queue if m['importance'] > 0.2], maxlen=self.capacity ) def retrieve(self, query: torch.Tensor) -> torch.Tensor: """Attention-based memory retrieval""" if not self.memory_queue: return torch.zeros_like(query) keys = torch.stack([self.key_proj(m['context']) for m in self.memory_queue]) values = torch.stack([self.value_proj(m['context']) for m in self.memory_queue]) query_proj = self.key_proj(query) scores = F.softmax(keys @ query_proj.t(), dim=0) return (scores * values).sum(dim=0)