File size: 5,519 Bytes
aaa2da2
a2177c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaa2da2
 
a2177c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---

language:
- en
pipeline_tag: text-generation
tags:
- fireplace
- fireplace-2
- valiant
- valiant-labs
- llama
- llama-3.1
- llama-3.1-instruct
- llama-3.1-instruct-8b
- llama-3
- llama-3-instruct
- llama-3-instruct-8b
- 8b
- function-calling
- sql
- database
- data-visualization
- matplotlib
- json
- conversational
- chat
- instruct
model_type: llama
license: llama3.1
---



![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64f267a8a4f79a118e0fcc89/qg49GOlx8zogDOrMTnb89.jpeg)


Fireplace 2 is a chat model, adding helpful structured outputs to Llama 3.1 8b Instruct.
  - an expansion pack of supplementary outputs - request them at will within your chat:
    - Inline function calls
    - SQL queries
    - JSON objects
    - Data visualization with matplotlib
  - Mix normal chat and structured outputs within the same conversation.
  - Fireplace 2 supplements the existing strengths of Llama 3.1, providing inline capabilities within the Llama 3 Instruct format.


## Version

This is the **2024-07-23** release of Fireplace 2 for Llama 3.1 8b.

We're excited to bring further upgrades and releases to Fireplace 2 in the future. 

Help us and recommend Fireplace 2 to your friends!


## Prompting Guide
Fireplace uses the [Llama 3.1 Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) prompt format. The example script below can be used as a starting point for general chat with Llama 3.1 and also includes the different special tokens used for Fireplace 2's added features:


import transformers
import torch

model_id = "ValiantLabs/Llama3.1-8B-Fireplace2"



pipeline = transformers.pipeline(

    "text-generation",

    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},

    device_map="auto",

)


messages = [
    {"role": "system", "content": "You are Fireplace, an expert technical assistant."},

    {"role": "user", "content": "Hi, can you explain local area networking to me?"}, #general Llama 3.1 chat

    #{"role": "user", "content": "I have the following SQL table: employees (job_id VARCHAR, salary INTEGER)\n\nCan you find all employees with a salary above $75000?<|request_sql|>"}, #for SQL query

    #{"role": "user", "content": "{""name"": ""get_news_headlines"",""description"": ""Get the latest news headlines"",""parameters"": {""type"": ""object"",""properties"": {""country"": {""type"": ""string"",""description"": ""The country for which news headlines are to be retrieved""}},""required"": [""country""]}}\n\nHi, can you get me the latest news headlines for the United States?<|request_function_call|>"}, # for function call

    #{"role": "user", "content": "Show me an example of a histogram with a fixed bin size. Use attractive colors.<|request_matplotlib|>"}, #for data visualization

    #{"role": "user", "content": "Can you define the word 'presence' for me, thanks!<|request_json|>"}, #for JSON output

]


outputs = pipeline(
    messages,

    max_new_tokens=512,

)

print(outputs[0]["generated_text"][-1])



While Fireplace 2 is trained to minimize incorrect structured outputs, they can still occur occasionally. Production uses of Fireplace 2 should verify the structure of all model outputs and remove any unneeded components of the output.

For handling of function call responses, use the [Llama 3.1 Instruct tool response style.](https://huggingface.co/blog/llama31#custom-tool-calling)


## Special Tokens

Fireplace 2 utilizes special tokens applied to the Llama 3.1 tokenizer:

- <|request_json|>

- <|start_json|>
- <|end_json|>

- <|request_sql|>
- <|start_sql|>

- <|end_sql|>
- <|request_matplotlib|>

- <|start_matplotlib|>
- <|end_matplotlib|>

- <|request_function_call|>

- <|start_function_call|>

- <|end_function_call|>



These are supplemental to the existing special tokens used by Llama 3.1, such as <|python_tag|> and <|start_header_id|>. Fireplace 2 has been trained using the Llama 3.1 Instruct chat structure, with new special tokens added within the conversation.

The 'request' tokens are used by the user to request a specific type of structured output. They should be appended to the end of the user's message and can be alternated with normal chat responses throughout the conversation.

## The Model
Fireplace 2 is built on top of Llama 3.1 8b Instruct.

This version of Fireplace 2 uses data from the following datasets:

- [glaiveai/glaive-function-calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
- [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)
- [sequelbox/Cadmium](https://huggingface.co/datasets/sequelbox/Cadmium)
- [sequelbox/Harlequin](https://huggingface.co/datasets/sequelbox/Harlequin)
- [migtissera/Tess-v1.5](https://huggingface.co/datasets/migtissera/Tess-v1.5)
- [LDJnr/Pure-Dove](https://huggingface.co/datasets/LDJnr/Pure-Dove)

Additional capabilities will be added to future releases.


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/VCJ8Fmefd8cdVhXSSxJiD.jpeg)


Fireplace 2 is created by [Valiant Labs.](http://valiantlabs.ca/)

[Check out our HuggingFace page for Shining Valiant 2 and our other models!](https://huggingface.co/ValiantLabs)

[Follow us on X for updates on our models!](https://twitter.com/valiant_labs)

We care about open source.
For everyone to use.

We encourage others to finetune further from our models.